Rotational inertia is directly proportional to the mass of an object and to the square of its distance from the axis of rotation. If the size of an object changes but the mass remains the same, the rotational inertia will also change because the distribution of mass relative to the axis of rotation will change.
Answer #1:The Rotational Inertia of an object increases as the mass "increases" and thedistance of the mass from the center of rotation "decreases".=================================Answer #2:If Answer #1 were correct, then flywheels would be made as small as possible,and a marble would be harder to spin than a wagon wheel is.An object's rotational inertia (moment of inertia) increases in direct proportionto its mass, and increases in proportion to the square of the distance of themass from the center of rotation.
The mass of an object has the most effect on its inertia. Inertia is the tendency of an object to resist changes in its motion, and this resistance is greater for objects with more mass.
The mass of an object has the most effect on its inertia. Inertia is a measure of an object's resistance to changes in its state of motion, and the greater the mass of an object, the greater its inertia.
effect on inertia of a body if force is double?
The mass of an object has the most effect on its inertia. Inertia is the resistance of an object to changes in its motion, and this resistance is directly proportional to the object's mass. Objects with greater mass have greater inertia.
Answer #1:The Rotational Inertia of an object increases as the mass "increases" and thedistance of the mass from the center of rotation "decreases".=================================Answer #2:If Answer #1 were correct, then flywheels would be made as small as possible,and a marble would be harder to spin than a wagon wheel is.An object's rotational inertia (moment of inertia) increases in direct proportionto its mass, and increases in proportion to the square of the distance of themass from the center of rotation.
The mass of an object has the most effect on its inertia. Inertia is the tendency of an object to resist changes in its motion, and this resistance is greater for objects with more mass.
The mass of an object has the most effect on its inertia. Inertia is a measure of an object's resistance to changes in its state of motion, and the greater the mass of an object, the greater its inertia.
effect on inertia of a body if force is double?
The mass of the gasses that make up our atmosphere weigh much more than the human population (1 trillionth of the earths mass) and move opportunistically into dense and low density pockets in all positions at all times on the globe and they have absolutely no effect on the rotational inertia. Consider the earth is not a solid mass inside or out, it is basically a hydraulic dampener. Now if you could generate sufficient vibration waves in order to harmonically disrupt the fluid dampening effect it would be possible for the system to fault and the earth to throw a bulge.
The mass of an object has the most effect on its inertia. Inertia is the resistance of an object to changes in its motion, and this resistance is directly proportional to the object's mass. Objects with greater mass have greater inertia.
If the mass changes then the amount of material in the object changes. This will also affect the moment of inertia and the gravitational effect of the object.
If the mass changes then the amount of material in the object changes. This will also affect the moment of inertia and the gravitational effect of the object.
"seasonal". And it doesnt effect sport performance.
Inertia is the tendency of an object to resist changes in its motion. The most significant effect of inertia on an object is it will continue to stay at rest or move at a constant velocity unless acted upon by an external force. This property is fundamental in understanding how objects behave in the presence of forces.
It really does not have an effect on the maximum speed, but due to inertia, it does inhibit [slow down] changes [acceleration or deceleration] in speed.
If the force acting on an object is doubled, the object's acceleration will also double according to Newton's second law (F = ma). Since inertia is the tendency of an object to resist changes in its motion, doubling the force will result in the object's inertia having a greater resistance to the change in acceleration.