answersLogoWhite

0

By turning the skis sideways, it greatly increases the surface area of the ski that is hitting the snow, and so greatly increases friction, allowing a skier to stop much sooner.

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

A skier on a hill has potential energy due to?

A skier on a hill has potential energy due to their position above the ground. This energy is a result of gravity pulling the skier downward. As the skier descends the hill, this potential energy is converted into kinetic energy.


A skier who has more blank energy than a skier at the bottom?

A skier at the top has more potential energy


What kind of energy would a skier have at the top of a hill have more than a skier at the bottom of the hill?

A skier at the top of a hill would have more potential energy due to their elevated position compared to a skier at the bottom of the hill. This potential energy can be converted into kinetic energy as the skier descends the hill.


What energy dose a skier has at the top of a hill and coming down a hill?

At the top of a hill, a skier has potential energy due to their position above the ground. As the skier comes down the hill, this potential energy is converted into kinetic energy as the skier gains speed.


What type of energy is A skier at the top of a mountain?

kinetic energy


What type of energy does a skier at the top of the mountain has?

A skier at the top of the mountain has potential energy, which is the energy stored in an object due to its position or state. As the skier moves downhill, potential energy is gradually converted into kinetic energy, the energy of motion.


What kind of energy does a skier have at the top of a hill?

A skier at the top of a hill has potential energy, which is the energy stored in an object due to its position or state. This potential energy can be converted into kinetic energy as the skier begins to move down the hill.


When a skier goes up a hill and down a hill what energy is that?

The skier going up the hill gains potential energy due to its height increase, which is stored energy that can be released when the skier goes back down the hill. As the skier goes down the hill, the potential energy is converted into kinetic energy, which is the energy of motion.


What type of energy is a skier poised to take off at the top of a hill?

The skier at the top of the hill has potential energy, which is the energy an object has due to its position or state. As the skier moves downhill, potential energy is converted into kinetic energy, the energy of motion.


What kind of energy would a skier have if standing at the top of a hill?

A skier at the top of a hill would have potential energy due to their elevated position. This potential energy can be converted into kinetic energy as the skier moves downhill.


What happens to energy of the skier if he goes down a hill?

The potential energy of the skier is converted into kinetic energy as they go down the hill due to gravity. This kinetic energy allows the skier to move faster and pick up speed.


What is the skier's potential energy at point A?

The skier's potential energy at point A is dependent on the skier's mass, the acceleration due to gravity, and the height of point A relative to a reference point. The potential energy can be calculated using the formula: potential energy = mass x gravity x height.