If the frequency of the light wave is decreased by a factor of 2, the wavelength will double. This is because the speed of light remains constant in a given medium, so as frequency decreases (and energy decreases), wavelength increases to maintain the speed of light.
A wave traveling at a constant speed will have its frequency remain the same regardless of the change in wavelength. The wavelength and frequency of a wave are inversely proportional, meaning if the wavelength is reduced by a factor of 3, the frequency would increase by a factor of 3 to maintain a constant speed.
If the frequency of a light wave is increased by a factor of 3, the wavelength will decrease by a factor of 1/3. This is because the speed of light remains constant in a given medium, so as frequency increases, wavelength has to decrease to maintain that speed.
The speed at which a wave propagates is the product of its wavelength and its frequency. The wavelength and the frequency vary inversely because the speed of a certain type of wave in a certain type of medium under certain conditions is constant.
If the velocity and frequency of the wave are both reduced to one half, the wavelength of the wave remains unchanged. The wavelength of a wave is determined by the velocity and frequency, so if both are reduced by the same factor, the wavelength will remain constant.
Frequency and wavelength are inversely proportional in a wave. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. This relationship follows the wave speed equation: wave speed = frequency x wavelength.
A wave traveling at a constant speed will have its frequency remain the same regardless of the change in wavelength. The wavelength and frequency of a wave are inversely proportional, meaning if the wavelength is reduced by a factor of 3, the frequency would increase by a factor of 3 to maintain a constant speed.
If the frequency of a light wave is increased by a factor of 3, the wavelength will decrease by a factor of 1/3. This is because the speed of light remains constant in a given medium, so as frequency increases, wavelength has to decrease to maintain that speed.
If the frequency is multiplied by 1.5, the wavelength will decrease by a factor of 2/3. This is because wavelength and frequency are inversely proportional to each other in a wave's speed equation (speed = wavelength × frequency).
i
The speed at which a wave propagates is the product of its wavelength and its frequency. The wavelength and the frequency vary inversely because the speed of a certain type of wave in a certain type of medium under certain conditions is constant.
Wavelength.
If the velocity and frequency of the wave are both reduced to one half, the wavelength of the wave remains unchanged. The wavelength of a wave is determined by the velocity and frequency, so if both are reduced by the same factor, the wavelength will remain constant.
Frequency and wavelength are inversely proportional in a wave. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. This relationship follows the wave speed equation: wave speed = frequency x wavelength.
If the frequency of a sound wave is multiplied by ten, the wavelength will decrease by a factor of ten. This is because the speed of sound in a given medium remains constant, so when frequency increases, wavelength decreases proportionally to maintain the speed of sound.
The product of (frequency) times (wavelength) is always the same number ... it's the speed of the wave. So if the frequency is changed by some percentage, the wavelength changes by the same percentage in the other direction, in order to keep their product the same as it was.
-- Changing the frequency/wavelength has no effect on the speed. (Notice that all electromagnetic waves, from wavelengths of perhaps 10-19 meters to perhaps 1,000 kilometers, travel with the same speed.) (Also notice that if the baritone sax plays a note together with the female vocalist, then you hear them at the same time, no matter how far from the stage you're seated.) -- Changing the frequency causes the wavelength to change, by the same factor in the opposite direction. -- Changing the speed causes the wavelength to change, by the same factor in the same direction.
Frequency and wavelength have an inverse ratio relationship. When one doubles, the other is cut in half. When one is multiplied by 10, the other is divided by 10. The exact relationship is: wavelength = wave velocity/frequency.