answersLogoWhite

0

In a second-class lever, like the effort between the strongman and the turkey, the load is between the fulcrum and the effort. This arrangement allows for more mechanical advantage compared to a third-class lever, where the effort is between the fulcrum and the load. In third-class levers, the effort required to move the load is greater because of the reduced mechanical advantage.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

How are levers grouped into classes?

Levers are grouped into three classes based on the relative positions of the load, effort, and fulcrum. Class 1 levers have the fulcrum between the load and the effort. Class 2 levers have the load between the fulcrum and the effort. Class 3 levers have the effort between the fulcrum and the load.


How are levers grouped?

Levers are grouped into three classes based on the relative position of the effort, load, and fulcrum. Class 1 levers have the effort and load on opposite sides of the fulcrum, Class 2 levers have the load between the effort and fulcrum, and Class 3 levers have the effort between the load and fulcrum.


What are Second and third class levers differentiated by?

Second class levers have the load between the fulcrum and the effort (load-fulcrum-effort), while third class levers have the effort between the load and the fulcrum (load-effort-fulcrum). Second class levers provide mechanical advantage and are more efficient for lifting heavy loads, while third class levers provide a speed advantage but require more effort.


Basis for the classification of lever?

The classification of levers is based on the relative positions of the effort, load, and fulcrum. There are three types of levers: first-class levers have the fulcrum placed between the effort and load, second-class levers have the load between the fulcrum and effort, and third-class levers have the effort between the fulcrum and load.


What characteristics distinguish levers as first class second class or third class?

The distinguishing characteristic of first-class levers is that the fulcrum lies between the effort force and the resistance force. Second-class levers have the resistance force between the fulcrum and the effort force. Third-class levers have the effort force between the fulcrum and the resistance force.

Related Questions

How are levers grouped into classes?

Levers are grouped into three classes based on the relative positions of the load, effort, and fulcrum. Class 1 levers have the fulcrum between the load and the effort. Class 2 levers have the load between the fulcrum and the effort. Class 3 levers have the effort between the fulcrum and the load.


How are levers grouped?

Levers are grouped into three classes based on the relative position of the effort, load, and fulcrum. Class 1 levers have the effort and load on opposite sides of the fulcrum, Class 2 levers have the load between the effort and fulcrum, and Class 3 levers have the effort between the load and fulcrum.


What are Second and third class levers differentiated by?

Second class levers have the load between the fulcrum and the effort (load-fulcrum-effort), while third class levers have the effort between the load and the fulcrum (load-effort-fulcrum). Second class levers provide mechanical advantage and are more efficient for lifting heavy loads, while third class levers provide a speed advantage but require more effort.


Basis for the classification of lever?

The classification of levers is based on the relative positions of the effort, load, and fulcrum. There are three types of levers: first-class levers have the fulcrum placed between the effort and load, second-class levers have the load between the fulcrum and effort, and third-class levers have the effort between the fulcrum and load.


What characteristics distinguish levers as first class second class or third class?

The distinguishing characteristic of first-class levers is that the fulcrum lies between the effort force and the resistance force. Second-class levers have the resistance force between the fulcrum and the effort force. Third-class levers have the effort force between the fulcrum and the resistance force.


Class levers have the resistance force between the effort force and the fulcrum?

Class 2.


How are the 3 kinds of levers classified?

The three kinds of levers are classified based on the relative positions of the effort, the resistance, and the fulcrum. In a first-class lever, the fulcrum is between the effort and the resistance. In a second-class lever, the resistance is between the fulcrum and the effort. In a third-class lever, the effort is between the fulcrum and the resistance.


What are some examples of class 3 levers?

First class levers are like see-saws. The fulcrum (turning point) comes between the effort and the load. So if you push down on the effort the load goes up. With second class levers the load comes between the effort and the fulcrum. This is good for catapulting things. Third class levers have the effort between the load and the fulcrum. An example would be a fishing rod. The fish on the end is the load, your hand on the rod is the effort and the hand at the end is the fulcrum.


How are first-class levers different from third-class levers?

First-class levers have the fulcrum located between the effort and the load, allowing for balanced movement. In contrast, third-class levers have the effort applied between the fulcrum and the load, making it easier to move the load over a shorter distance with more force.


How do the three types of levers differ from one another?

The three types of levers differ based on the position of the load, effort, and fulcrum. In a first-class lever, the fulcrum is between the load and the effort. In a second-class lever, the load is between the fulcrum and the effort. In a third-class lever, the effort is between the fulcrum and the load.


What are some examples 1st class levers?

Examples of first-class levers include a seesaw, scissors, and a crowbar. In these levers, the fulcrum is located between the effort (force) and the load (resistance).


Why Wheel Barrow is second order lever?

because the load is in between the effort and the fulcrum. In second order levers the load is always in between the effort and the fulcrum.