answersLogoWhite

0

Well, first you solve for acceleration using "a= (Vf-Vi)/t"

a= (Vf-Vi)/t

a=(145-75)/15

a=70/15

a=14/3 m/s2

Then you can use "d=vit+1/2at2" to solve for distance

d=vit+1/2at2

d=(75)(15)+1/2(14/3)(15)2

d=1125 + 525

d=1650m

And there's your answer.

---- Alternatively, you could use d=t(vi+vf)/2

d=t(vi+vf)/2

d=15(75+145)/2

d=1650m

User Avatar

Wiki User

17y ago

What else can I help you with?

Continue Learning about Physics

If a car goes in 6.8 seconds how do you figure out the acceleration?

To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.


How far does a plane fly in 15 seconds while it's velocity is increasing from 75 m s to 145 m s at a uniform rate of acceleration?

To calculate the distance traveled while the velocity is increasing, you can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. In this case, the initial velocity is 75 m/s, the final velocity is 145 m/s, the acceleration is constant, and the time is 15 seconds. Plugging these values into the formula will give you the distance the plane travels during the acceleration period.


How far does a plane fly in 15 seconds while its velocity is increasing from 75 miles per second to 145 miles per second at a uniform rate of acceleration?

To find the distance traveled, we can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. The initial velocity is 75 miles per second, the final velocity is 145 miles per second, and the time is 15 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time. Plug in the values to find the acceleration and then calculate the distance traveled in 15 seconds.


How do you calculate acceleration between 6 and 9 seconds?

To calculate acceleration between 6 and 9 seconds, you need to find the change in velocity during that time interval and then divide it by the time taken. The formula for acceleration is acceleration = (final velocity - initial velocity) / time. Plug in the velocities at 6 seconds and 9 seconds into the formula to get the acceleration.


Can a body have constant acceleration and zero velocity?

Since the derivative of velocity is acceleration, the answer would be technically 'no'. Here is why: v = 0 v' = 0 = a Or in variable form... v(x) = x v(0) = 0 v'(0) = 0 = a You can "trick" the derivative into saying that v'(x) = 1 = a (since the derivative of x = 1) and then stating v'(0) = 1 = a... but that is not entirely correct. Acceleration is a change over time and is measured at more then one point (i.e. the acceleration of this body of matter is y from time 1 to 5) unless using derivatives to form the equation of the acceleration line/curve. If an object has a constant acceleration of 1, then the velocity is constantly increasing over that time. Using the equation discussed above and looking at acceleration over time, at 0 seconds, acceleration is 0 and so is velocity, but from 0-1 seconds acceleration is 1 and velocity is 1 as well. 0-2 seconds, acceleration is 1, but velocity would be 2 (at the end of 2 seconds).

Related Questions

If a car goes in 6.8 seconds how do you figure out the acceleration?

To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.


How far does a plane fly in 15 seconds while it's velocity is increasing from 75 m s to 145 m s at a uniform rate of acceleration?

To calculate the distance traveled while the velocity is increasing, you can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. In this case, the initial velocity is 75 m/s, the final velocity is 145 m/s, the acceleration is constant, and the time is 15 seconds. Plugging these values into the formula will give you the distance the plane travels during the acceleration period.


How far does a plane fly in 15 seconds while its velocity is increasing from 75 miles per second to 145 miles per second at a uniform rate of acceleration?

To find the distance traveled, we can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. The initial velocity is 75 miles per second, the final velocity is 145 miles per second, and the time is 15 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time. Plug in the values to find the acceleration and then calculate the distance traveled in 15 seconds.


How do you calculate acceleration between 6 and 9 seconds?

To calculate acceleration between 6 and 9 seconds, you need to find the change in velocity during that time interval and then divide it by the time taken. The formula for acceleration is acceleration = (final velocity - initial velocity) / time. Plug in the velocities at 6 seconds and 9 seconds into the formula to get the acceleration.


When acceleration occurs?

Acceleration occurs when velocity changes over time. The formula for it is as follows: a = (Vf - Vi) / t a: acceleration (meters/seconds2) Vf: Final velocity (meters/seconds) Vi: Initial Velocity (meters/seconds) t: Time (seconds)


Can bodies with different velocities have same acceleration?

Yes, velocity is acceleration x time. If acceleration is the same, velocity can be different as it changes with time. For example a car accelerating with constant acceleration will have a different velocity after 5 seconds than it will have at 2 seconds.


What is the acceleration of an object that starts stopped and after 5 seconds is going 25mm per hour?

the acceleration is increasing speed Acceleration = velocity change / time velocity change = 0 to 25 mm/hr = 25 mm/hr time = 5 seconds therefore acceleration = 25/5 mm/hr per second = 5 mm per hour per second.


What is the average acceleration between 0 seconds and 4 seconds?

what is the change in speed or velocity? average acceleration will be change in speed or velocity divided by time taken (4 seconds in ur case)


Can a body have constant acceleration and zero velocity?

Since the derivative of velocity is acceleration, the answer would be technically 'no'. Here is why: v = 0 v' = 0 = a Or in variable form... v(x) = x v(0) = 0 v'(0) = 0 = a You can "trick" the derivative into saying that v'(x) = 1 = a (since the derivative of x = 1) and then stating v'(0) = 1 = a... but that is not entirely correct. Acceleration is a change over time and is measured at more then one point (i.e. the acceleration of this body of matter is y from time 1 to 5) unless using derivatives to form the equation of the acceleration line/curve. If an object has a constant acceleration of 1, then the velocity is constantly increasing over that time. Using the equation discussed above and looking at acceleration over time, at 0 seconds, acceleration is 0 and so is velocity, but from 0-1 seconds acceleration is 1 and velocity is 1 as well. 0-2 seconds, acceleration is 1, but velocity would be 2 (at the end of 2 seconds).


What is the vehicles velocity after 1.0 seconds?

That depends on its initial velocity and its acceleration. V1 = V0 + a * t


What is the acceleration of a car with a steady velocity of 100 km per hour for 100 seconds?

If velocity is steady and doesn't change, then there is 0 acceleration.


Find the acceleration of a car that goes from A meters per second to B meters per second in 8 seconds?

The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. Given the initial velocity (A), final velocity (B), and time (8 seconds), you can substitute the values into the formula to find the acceleration.