Well, first you solve for acceleration using "a= (Vf-Vi)/t"
a= (Vf-Vi)/t
a=(145-75)/15
a=70/15
a=14/3 m/s2
Then you can use "d=vit+1/2at2" to solve for distance
d=vit+1/2at2
d=(75)(15)+1/2(14/3)(15)2
d=1125 + 525
d=1650m
And there's your answer.
---- Alternatively, you could use d=t(vi+vf)/2
d=t(vi+vf)/2
d=15(75+145)/2
d=1650m
To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.
To calculate the distance traveled while the velocity is increasing, you can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. In this case, the initial velocity is 75 m/s, the final velocity is 145 m/s, the acceleration is constant, and the time is 15 seconds. Plugging these values into the formula will give you the distance the plane travels during the acceleration period.
To find the distance traveled, we can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. The initial velocity is 75 miles per second, the final velocity is 145 miles per second, and the time is 15 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time. Plug in the values to find the acceleration and then calculate the distance traveled in 15 seconds.
To calculate acceleration between 6 and 9 seconds, you need to find the change in velocity during that time interval and then divide it by the time taken. The formula for acceleration is acceleration = (final velocity - initial velocity) / time. Plug in the velocities at 6 seconds and 9 seconds into the formula to get the acceleration.
Since the derivative of velocity is acceleration, the answer would be technically 'no'. Here is why: v = 0 v' = 0 = a Or in variable form... v(x) = x v(0) = 0 v'(0) = 0 = a You can "trick" the derivative into saying that v'(x) = 1 = a (since the derivative of x = 1) and then stating v'(0) = 1 = a... but that is not entirely correct. Acceleration is a change over time and is measured at more then one point (i.e. the acceleration of this body of matter is y from time 1 to 5) unless using derivatives to form the equation of the acceleration line/curve. If an object has a constant acceleration of 1, then the velocity is constantly increasing over that time. Using the equation discussed above and looking at acceleration over time, at 0 seconds, acceleration is 0 and so is velocity, but from 0-1 seconds acceleration is 1 and velocity is 1 as well. 0-2 seconds, acceleration is 1, but velocity would be 2 (at the end of 2 seconds).
To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.
To calculate the distance traveled while the velocity is increasing, you can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. In this case, the initial velocity is 75 m/s, the final velocity is 145 m/s, the acceleration is constant, and the time is 15 seconds. Plugging these values into the formula will give you the distance the plane travels during the acceleration period.
To find the distance traveled, we can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. The initial velocity is 75 miles per second, the final velocity is 145 miles per second, and the time is 15 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time. Plug in the values to find the acceleration and then calculate the distance traveled in 15 seconds.
To calculate acceleration between 6 and 9 seconds, you need to find the change in velocity during that time interval and then divide it by the time taken. The formula for acceleration is acceleration = (final velocity - initial velocity) / time. Plug in the velocities at 6 seconds and 9 seconds into the formula to get the acceleration.
Acceleration occurs when velocity changes over time. The formula for it is as follows: a = (Vf - Vi) / t a: acceleration (meters/seconds2) Vf: Final velocity (meters/seconds) Vi: Initial Velocity (meters/seconds) t: Time (seconds)
Yes, velocity is acceleration x time. If acceleration is the same, velocity can be different as it changes with time. For example a car accelerating with constant acceleration will have a different velocity after 5 seconds than it will have at 2 seconds.
the acceleration is increasing speed Acceleration = velocity change / time velocity change = 0 to 25 mm/hr = 25 mm/hr time = 5 seconds therefore acceleration = 25/5 mm/hr per second = 5 mm per hour per second.
what is the change in speed or velocity? average acceleration will be change in speed or velocity divided by time taken (4 seconds in ur case)
Since the derivative of velocity is acceleration, the answer would be technically 'no'. Here is why: v = 0 v' = 0 = a Or in variable form... v(x) = x v(0) = 0 v'(0) = 0 = a You can "trick" the derivative into saying that v'(x) = 1 = a (since the derivative of x = 1) and then stating v'(0) = 1 = a... but that is not entirely correct. Acceleration is a change over time and is measured at more then one point (i.e. the acceleration of this body of matter is y from time 1 to 5) unless using derivatives to form the equation of the acceleration line/curve. If an object has a constant acceleration of 1, then the velocity is constantly increasing over that time. Using the equation discussed above and looking at acceleration over time, at 0 seconds, acceleration is 0 and so is velocity, but from 0-1 seconds acceleration is 1 and velocity is 1 as well. 0-2 seconds, acceleration is 1, but velocity would be 2 (at the end of 2 seconds).
That depends on its initial velocity and its acceleration. V1 = V0 + a * t
If velocity is steady and doesn't change, then there is 0 acceleration.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. Given the initial velocity (A), final velocity (B), and time (8 seconds), you can substitute the values into the formula to find the acceleration.