answersLogoWhite

0

speed = frequency x wavelength

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Physics

How is wavelength related to frequency for waves moving at a constant speed?

Wavelength and frequency are inversely proportional for waves moving at a constant speed. This means that as the wavelength increases, the frequency decreases, and vice versa. The product of wavelength and frequency is always equal to the speed of the wave.


How is wave length related to frequency fro waves moving at a constant speed?

The wavelength and frequency of a wave are inversely related when the wave is moving at a constant speed. This means that as the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the equation: speed = frequency x wavelength.


How is a waves frequency related to a waves length?

Frequency and wavelength of a wave are inversely related: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the wave equation: speed = frequency x wavelength. In other words, for a given wave speed, if frequency increases, wavelength must decrease to maintain the same speed.


Which waves would have a longer wavelengththose with 56 Hz frequency or 2MHz frequency?

The waves with a 2MHz frequency would have a longer wavelength compared to those with a 56 Hz frequency. Wavelength and frequency are inversely related according to the equation: wavelength = speed of light / frequency. Since the speed of light is constant, higher frequency waves have shorter wavelengths.


How does the wavelength of waves traveling with the same speed change is the frequency of the waves increase?

As frequency increases, the wavelength decreases for waves traveling at the same speed. This relationship is defined by the formula: wavelength = speed of light / frequency. So, if the frequency increases, the wavelength must decrease to maintain a constant speed.

Related Questions

How is the wavelength related to frequency for waves moving at a constant speed?

Whatever the wavelength and frequency happen to be, their product is always equal to the speed.


How are a waves frequency and its wavelength related?

For any wave:frequency x wavelength = speed (of the wave)


How is wavelength related to frequency for waves moving at a constant speed?

Wavelength and frequency are inversely proportional for waves moving at a constant speed. This means that as the wavelength increases, the frequency decreases, and vice versa. The product of wavelength and frequency is always equal to the speed of the wave.


How are wavelenghth and frequency of electromagnetic radiation related?

For any wave, (wavelength) times (frequency) = (speed of propagation).For electromagnetic waves, (wavelength) times (frequency) = (speed of 'light')


When working with waves frequency x equals speed?

When working with waves ... or even just talking about them ... (frequency) = (speed) divided by (wavelength) (wavelength) = (speed) divided by (frequency) (frequency) times (wavelength) = (speed)


How is wave length related to frequency fro waves moving at a constant speed?

The wavelength and frequency of a wave are inversely related when the wave is moving at a constant speed. This means that as the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the equation: speed = frequency x wavelength.


How is a waves frequency related to a waves length?

Frequency and wavelength of a wave are inversely related: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the wave equation: speed = frequency x wavelength. In other words, for a given wave speed, if frequency increases, wavelength must decrease to maintain the same speed.


How does a waves speed relate to its wavelength and frequency?

The product of (wavelength) times (frequency) is the speed.


How wavelength of waves traveling with the same speed would change if the frequency of waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How would the wavelength of waves traveling with the same speed change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How the wavelength of waves traveling with the same speed would change if the frequency of the waves increase?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.


How wavelength of waves traveling with the same speed would change if the frequency of the Waves increases?

The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.