A larger parachute creates more air resistance due to its increased surface area, which helps to slow down the descent. This is because the drag force acting on the parachute is proportional to its size. Additionally, a larger parachute can provide more stability and control during descent.
The size of the parachute affects air resistance because a larger parachute will have more surface area interacting with the air, creating more drag. This drag helps to slow down the descent of the object attached to the parachute. Conversely, a smaller parachute will generate less air resistance and may result in a faster descent.
The larger the size of the parachute the more air resistance is caused because its larger surface traps more air. Becuase there is more air resistance the larger the parachute the slower it travels to the ground. The smaller the parachute the faster it falls to the ground for the opposite reason.
A larger parachute will create more air resistance, slowing down the descent. This can result in a slower and gentler landing. Conversely, a smaller parachute will generate less air resistance and lead to a faster descent and potentially a harder landing.
Thrust does not act on a parachute. A parachute experiences air resistance, which is a force that opposes the downward motion of the parachute and slows its descent. This air resistance allows the parachute to safely decelerate a falling object.
A larger parachute will result in more air resistance, slowing down the descent and increasing the time it takes to reach the ground compared to a smaller parachute. Conversely, a smaller parachute will experience less air resistance, allowing for a quicker descent and shorter time to reach the ground.
The size of the parachute affects air resistance because a larger parachute will have more surface area interacting with the air, creating more drag. This drag helps to slow down the descent of the object attached to the parachute. Conversely, a smaller parachute will generate less air resistance and may result in a faster descent.
The larger the size of the parachute the more air resistance is caused because its larger surface traps more air. Becuase there is more air resistance the larger the parachute the slower it travels to the ground. The smaller the parachute the faster it falls to the ground for the opposite reason.
cross sectional area for air resistance is greater as you increase the parachute size.
Air Resistance slows the parachute down.
A larger parachute will create more air resistance, slowing down the descent. This can result in a slower and gentler landing. Conversely, a smaller parachute will generate less air resistance and lead to a faster descent and potentially a harder landing.
Thrust does not act on a parachute. A parachute experiences air resistance, which is a force that opposes the downward motion of the parachute and slows its descent. This air resistance allows the parachute to safely decelerate a falling object.
A parachute works as the gravity allows the parachute to go up into the air, then the surface area is covered with air resistance.
A larger parachute will result in more air resistance, slowing down the descent and increasing the time it takes to reach the ground compared to a smaller parachute. Conversely, a smaller parachute will experience less air resistance, allowing for a quicker descent and shorter time to reach the ground.
When an object falls through air, it experiences air resistance. This air resistance is a force that opposes the object's motion. The amount of air resistance an object experiences depends on the object's shape, size, and speed. A man using a parachute falls slowly because the parachute creates a large amount of air resistance. A stone falls very fast because it has a small amount of air resistance.
Air resistance will increase when the parachute opens, and the decent of the skydiver will slow down.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
When parachute strings are longer, there is more surface area of the strings exposed to the air. This increases the overall air resistance experienced by the parachute system as a whole, making it slower to fall.