It isn't. The direction of momentum is the same as the direction of the velocity - of the movement. The direction of acceleration, on the other hand, is the same as the direction of the net force that acts on an object - and this force can be in any direction.
Acceleration and momentum are both related to an object's motion. Acceleration is the rate of change of an object's velocity, while momentum is the product of an object's mass and velocity. Both quantities are vector quantities, meaning they have both magnitude and direction. Additionally, both acceleration and momentum play a key role in determining how objects move and interact with each other.
The quantities of motion are described by the concepts of speed, velocity, acceleration, and momentum. Speed is the rate of motion, velocity includes speed and direction, acceleration is the rate at which velocity changes, and momentum is the product of an object's mass and its velocity.
A vector quantity is any quantity in which a direction is relevant. Some examples include position, velocity, acceleration, force, momentum, rotational momentum (the vector is defined to point in the direction of the axis in this case), torque, etc.
No. Momentum is defined as mass times velocity, acceleration is the rate of change of velocity. To be more accurate, velocity is a vector quantity, it has both magnitude and direction. Momentum is therefore also a vector quantity in the direction of the velocity with magnitude equal to the mass times the magnitude of the velocity: 1) p = mv Acceleration is also a vector quantity and in the direction of the change in velocity direction and represents the rate of change of velocity: 2) a = dv/dt Force is defined as the rate of change of momentum, and is therefore also a vector in the direction of the momentum change: 3) F = dp/dt Substituting 1) in 3) we get: 4) F = m(dv/dt) And since 2) defines dv/dt as acceleration we get: 5) F = ma In other words, force is mass times acceleration. Note: The assumption above is that mass remains constant. This is an approximation that remains true only for slow speeds in comparison with the speed of light. These equations do not hold when approaching the speed of light as mass increases, and in fact makes it impossible to actually accelerate something to the speed of light.
Momentum is related to the mass and velocity of an object. It is a property that describes the motion of an object and is defined as the product of an object's mass and its velocity. Momentum is a vector quantity, meaning it has both magnitude and direction.
Acceleration and momentum are both related to an object's motion. Acceleration is the rate of change of an object's velocity, while momentum is the product of an object's mass and velocity. Both quantities are vector quantities, meaning they have both magnitude and direction. Additionally, both acceleration and momentum play a key role in determining how objects move and interact with each other.
DirectionTrajectoryCoursePathDirectionTrajectoryCoursePathDirectionTrajectoryCoursePathDirectionTrajectoryCoursePathforce acceleration momentum velocity
A change in speed (and/or direction) is acceleration.
Acceleration is the rate at which velocity is changing, with the direction of the change.
It's a matter of physics. It's acceleration, it's speed, it's direction, and it's momentum. All of that is related to science.
No. A vector is any measurement that includes a direction, for example velocity, momentum, acceleration, or force.
The quantities of motion are described by the concepts of speed, velocity, acceleration, and momentum. Speed is the rate of motion, velocity includes speed and direction, acceleration is the rate at which velocity changes, and momentum is the product of an object's mass and its velocity.
A vector quantity is any quantity in which a direction is relevant. Some examples include position, velocity, acceleration, force, momentum, rotational momentum (the vector is defined to point in the direction of the axis in this case), torque, etc.
No. Momentum is defined as mass times velocity, acceleration is the rate of change of velocity. To be more accurate, velocity is a vector quantity, it has both magnitude and direction. Momentum is therefore also a vector quantity in the direction of the velocity with magnitude equal to the mass times the magnitude of the velocity: 1) p = mv Acceleration is also a vector quantity and in the direction of the change in velocity direction and represents the rate of change of velocity: 2) a = dv/dt Force is defined as the rate of change of momentum, and is therefore also a vector in the direction of the momentum change: 3) F = dp/dt Substituting 1) in 3) we get: 4) F = m(dv/dt) And since 2) defines dv/dt as acceleration we get: 5) F = ma In other words, force is mass times acceleration. Note: The assumption above is that mass remains constant. This is an approximation that remains true only for slow speeds in comparison with the speed of light. These equations do not hold when approaching the speed of light as mass increases, and in fact makes it impossible to actually accelerate something to the speed of light.
Momentum is related to the mass and velocity of an object. It is a property that describes the motion of an object and is defined as the product of an object's mass and its velocity. Momentum is a vector quantity, meaning it has both magnitude and direction.
no just acceleration
The answer is velocity.