answersLogoWhite

0

The mass defect in fission power plants is used to release energy by converting a small fraction of the mass of a heavy nucleus into energy during nuclear fission. This energy is then used to generate heat, which is converted into electricity through turbines and generators. The difference in mass before and after the fission reaction contributes to the energy released.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

How is fission used to calculate the energy required?

In nuclear fission, the energy released is calculated using the mass defect principle expressed by Einstein's equation E=mc^2, where E is energy, m is mass defect, and c is the speed of light. The mass defect is the difference in mass between the reactants and products of the fission reaction, and this mass defect is converted to energy according to Einstein's equation.


During nuclear fission, mass is converted into what?

During nuclear fission, mass is converted into energy.


How is a nuclear energy formed and used?

Nuclear is formed either by: Fission of heavy nucleiFusion of light nucleiRadioactive decay of unstable nucleiNuclear energy results from the mass defect (either due to fission, fusion, or radioactive decay) change into kinetic energy that is changed into thermal energy (producing steam) then to mechanical energy then to electric energy.


What are fusion and fission with respect to nuclear physics?

Fission is a nuclear reaction where a heavy atom is split up into lighter elements, thereby producing energy. Fission is commonly used in nuclear power plants, but someday they will use fusion. Fusion is a nuclear reaction where very light elements are fused together under enormous heat and pressure into heavier elements, thereby producing energy. The Sun and all the stars are fusion reactors. Thermonuclear bombs (H-bombs) use fission (an A-bomb) to produce the heat needed for fusion.


How does mass defect relate to binding energy in the nuclear?

Mass defect is the difference between the mass of an atomic nucleus and the sum of the masses of its individual protons and neutrons. This lost mass is converted into binding energy, which is the energy required to hold the nucleus together. The greater the mass defect, the greater the binding energy holding the nucleus together.

Related Questions

How does nuclear fission and nuclear fusion get power?

The mass defect due to fission or fusion converts to energy according to the equation: E = m c 2


How is fission used to calculate the energy required?

In nuclear fission, the energy released is calculated using the mass defect principle expressed by Einstein's equation E=mc^2, where E is energy, m is mass defect, and c is the speed of light. The mass defect is the difference in mass between the reactants and products of the fission reaction, and this mass defect is converted to energy according to Einstein's equation.


What happens to the lost mass during fission?

The lost mass (or mass defect) transforms into energy according to the law: E = mc2


What is nuclear fission and how does mass defect involved?

Nuclear fission is the process of splitting an atomic nucleus into two or more smaller nuclei. During this process, some mass is converted into energy according to Einstein's famous equation E=mc^2, where c is the speed of light. The mass defect is the difference in mass between the original nucleus and the smaller nuclei produced after fission, and this missing mass is converted into energy.


Who calculated the energy released in nuclear fission?

Einstein's e=mc2 calculates the energy provided you have to mass defect (or the mass in which the product is subtracted from the reactants)


What is the splitting of an atomic nucleus to form two smaller nuclei of roughly equal mass?

Nuclear fission is the process by which an atomic nucleus splits into two smaller nuclei of roughly equal mass. This process releases a large amount of energy, making it a key component in nuclear power plants and nuclear weapons.


What is the only thing that can get changed in a balancing equation?

It is the mass defect during a fission reaction. Enrgy evolved during a radioactive fission can be calculated using the formula gived by Einstein e =mc


Does nuclear fission have small amounts of mass?

Yes, nuclear fission involves the splitting of a heavy nucleus into lighter nuclei, releasing energy in the process. This conversion of mass into energy, as described by Einstein’s famous equation E=mc^2, results in a small loss of mass during such reactions.


The binding energy of an atomic nucleus is the energy equivalent to the atom's?

The binding energy of an atomic nucleus is the energy equivalent to the mass defect, which is the difference between the mass of the nucleus and the sum of the masses of its individual protons and neutrons. This energy is needed to hold the nucleus together and is released during nuclear reactions, such as fusion or fission.


How do you use E equals mc2 today?

This equation was given by the great scientist Albert Einstein. This is the relation between mass and the energy. According to Einstein, the mass and energy one and the same. This equation is used in the calculation of the energy liberated in the fusion and fission reaction of the nuclei. where the mass is the defect mass or the mass converted into the energy, c is the velocity of light (c= 3x10^8) and E is energy. for example : if in a fission of the U-235 the mass defect is 0.2233 amu , then the energy released will be equals to E= mc2 => E=0.2233x9x10^16 => E= 2.097x10^16 J


How is a nuclear fission made?

Nuclear fission is the splitting of heavy nuclei (as U-235) when bombarded by neutrons. The nuclear fission results in loss of mass (or mass defect) that transforms into energy according to formula E = mc2 (c is light velocity). The resulting energy manifests itself as heat energy that produces steam. The steam spins the turbines that spins electric generators and hence producing electricity.


What is nuclear atomic fission?

Nuclear fission is the splitting of heavy nuclei (as U-235) when bombarded by neutrons. The nuclear fission results in loss of mass (or mass defect) that transforms into energy according to formula E = mc2 (c is light velocity). The resulting energy manifests itself as heat energy that produces steam. The steam spins the turbines that spins electric generators and hence producing electricity.