350/5 = 70 Newtons. Force is not a function of distance but work is
The simple pulley is the type of pulley that does not have a mechanical advantage.
The mechanical advantage of a pulley system is the ratio of the output force to the input force. It is calculated by dividing the load force by the effort force required to lift the load. The mechanical advantage of a pulley system can be greater than 1, making it easier to lift heavy objects.
The ideal mechanical advantage of a pulley system is two times the number of pulleys in the system. This is the amount of force required to get the system moving.
A single fixed pulley has a mechanical advantage of 1, as it only changes the direction of the force. A moveable pulley system has a mechanical advantage of 2, as it reduces the force required by half. A block and tackle system, which combines fixed and moveable pulleys, can have a mechanical advantage greater than 2, depending on the number of pulleys used.
To improve a pulley's mechanical advantage, you can add more pulleys to create a multiple pulley system. This arrangement increases the number of ropes supporting the load and reduces the amount of force required to lift the load. Another method is to use a pulley system with a smaller diameter pulley for the effort force and a larger diameter pulley for the load, which can also increase the mechanical advantage.
The simple pulley is the type of pulley that does not have a mechanical advantage.
The mechanical advantage of a pulley system is the ratio of the output force to the input force. It is calculated by dividing the load force by the effort force required to lift the load. The mechanical advantage of a pulley system can be greater than 1, making it easier to lift heavy objects.
The ideal mechanical advantage of a pulley system is two times the number of pulleys in the system. This is the amount of force required to get the system moving.
A single fixed pulley has a mechanical advantage of 1, as it only changes the direction of the force. A moveable pulley system has a mechanical advantage of 2, as it reduces the force required by half. A block and tackle system, which combines fixed and moveable pulleys, can have a mechanical advantage greater than 2, depending on the number of pulleys used.
To improve a pulley's mechanical advantage, you can add more pulleys to create a multiple pulley system. This arrangement increases the number of ropes supporting the load and reduces the amount of force required to lift the load. Another method is to use a pulley system with a smaller diameter pulley for the effort force and a larger diameter pulley for the load, which can also increase the mechanical advantage.
A pulley system is used to lift a 2,000 newton engine up a distance of 3 meters. How much force will the operator have to apply if the mechanical advantage of the pulley system is 4? mechanical advantage = 500 newtons.
Depending on the type of pulley system you have (Fixed/ movable/ combined pulley) using either of these will give you mechanical advantage. The different pulley types are designed to even the weight of the object your pulled out, this will enable you to lift heavier objects with a lighter pull
The mechanical advantage of the pulley system is the inertia and friction of the unbalanced and balanced forces acting on the mechanical advantage which is part of the pulley system....
A fixed pulley does NOT multiply the effort force or have a mechanical advantage. It only changes the direction of the effort force. A free pulley multiplies the effort by two. this means the free pulley has a mechanical advantage of 2.information from:www.mhscience02.com
The kind of pulley has an ideal machanical advantage of 2 is called "Movable Pulley". From, Bryan Hollick
The formula used to calculate mechanical advantage in a pulley system is: Mechanical Advantage Number of supporting ropes or strands.
The mechanical advantage of a pulley system depends on the number of ropes supporting the moving block or load. More ropes mean a higher mechanical advantage.