314j
Kilowatts is a unit of energy rate, while the temperature required to raise a specific volume of water by a specific amount of degrees is a unit of energy, not energy rate. The question cannot, therefore, be answered as stated. Please restate the question.
The specific heat capacity of aluminum is 900 J/kg°C. The change in temperature is 3°C. Using the formula Q = mcΔT, the energy required would be 0.2 kg * 900 J/kg°C * 3°C = 540 J. So, the energy required to raise the temperature is 540 Joules.
The specific heat capacity of aluminum is 0.9 J/g°C. To calculate the energy required to raise the temperature of 0.2kg of aluminum by 3 degrees Celsius, you would use the formula: Energy = mass x specific heat capacity x temperature change. Substituting the values into the formula, Energy = 0.2kg x 0.9 J/g°C x 3°C = 0.54 Joules.
The amount of energy required to raise the temperature of 1 kg of water by 1 degree Celsius is approximately 4,186 Joules. Therefore, to raise the temperature by 2 degrees Celsius, you would need about 8,372 Joules of energy.
The amount of heat energy required can be calculated using the formula: Q = mcΔT. Given m = 0.362 kg, c = 390 J/kg°C for copper, and ΔT = (60.0 - 23.0) = 37.0 °C, plug these values into the formula to find the heat energy required to raise the temperature of the copper.
If you are asking why a green heating system will not go above 68 degrees Fahrenheit then one reason is to save energy. The higher the temperature the more energy required to get to that temperature and the more energy required to keep that temperature.
Kilowatts is a unit of energy rate, while the temperature required to raise a specific volume of water by a specific amount of degrees is a unit of energy, not energy rate. The question cannot, therefore, be answered as stated. Please restate the question.
Specific heat capacity is the term that describes the amount of thermal energy required to raise the temperature of a substance by 1.0 degree Celsius.
The amount of heat required to increase the temperature of the substance to 1 degree greater than that of the initial temperature of the body!
The specific heat capacity of aluminum is 900 J/kg°C. The change in temperature is 3°C. Using the formula Q = mcΔT, the energy required would be 0.2 kg * 900 J/kg°C * 3°C = 540 J. So, the energy required to raise the temperature is 540 Joules.
No, temperature is not measured in calories. Temperature is typically measured in degrees Celsius (°C) or degrees Fahrenheit (°F), while calories are units of energy related to the amount of heat required to raise the temperature of one gram of water by one degree Celsius.
The specific heat capacity of aluminum is 0.9 J/g°C. To calculate the energy required to raise the temperature of 0.2kg of aluminum by 3 degrees Celsius, you would use the formula: Energy = mass x specific heat capacity x temperature change. Substituting the values into the formula, Energy = 0.2kg x 0.9 J/g°C x 3°C = 0.54 Joules.
The amount of energy required to raise the temperature of 1 kg of water by 1 degree Celsius is approximately 4,186 Joules. Therefore, to raise the temperature by 2 degrees Celsius, you would need about 8,372 Joules of energy.
I will use this formula. Some conversion will be required. ( I only know specific heat iron in J/gC ) q(Joules) = mass * specific heat * change in temperature Celsius 3 kilograms cast iron = 3000 grams q = (3000 g)(0.46 J/gC)(120 C - 30 C) = 124200 Joules (1 kilojoule/1000 joules) = 124.2 kilojoules of energy needed ===========================
The amount of heat energy required can be calculated using the formula: Q = mcΔT. Given m = 0.362 kg, c = 390 J/kg°C for copper, and ΔT = (60.0 - 23.0) = 37.0 °C, plug these values into the formula to find the heat energy required to raise the temperature of the copper.
The specific heat capacity of water is 4.18 J/g°C. To calculate the energy required to raise 21 kg of water by 2 degrees Celsius, use the formula: Energy = mass x specific heat capacity x temperature change. Plugging in the values, the energy required is 21,084 Joules.
The amount of energy needed to raise the temperature of a substance is calculated using the formula ( Q = mc\Delta T ), where ( Q ) is the heat energy (in joules), ( m ) is the mass of the substance (in kilograms), ( c ) is the specific heat capacity (in joules per kilogram per degree Celsius), and ( \Delta T ) is the change in temperature (in degrees Celsius). This formula helps determine how much energy is required to achieve a desired temperature increase for a given mass of a substance.