answersLogoWhite

0

What else can I help you with?

Continue Learning about Physics

How many kilowatts are required to raise the temperature of 1000 liters of water by 10 degrees centigrade?

Kilowatts is a unit of energy rate, while the temperature required to raise a specific volume of water by a specific amount of degrees is a unit of energy, not energy rate. The question cannot, therefore, be answered as stated. Please restate the question.


How much energy is required to raise the temperature of 0.2 kg of aluminum from 15 degrees celsius to 18 degrees celsius?

The specific heat capacity of aluminum is 900 J/kg°C. The change in temperature is 3°C. Using the formula Q = mcΔT, the energy required would be 0.2 kg * 900 J/kg°C * 3°C = 540 J. So, the energy required to raise the temperature is 540 Joules.


How much energy is required to raise the temperature of 0.2kg of aluminum for 15 degrees celsius to 18 degrees celsius?

The specific heat capacity of aluminum is 0.9 J/g°C. To calculate the energy required to raise the temperature of 0.2kg of aluminum by 3 degrees Celsius, you would use the formula: Energy = mass x specific heat capacity x temperature change. Substituting the values into the formula, Energy = 0.2kg x 0.9 J/g°C x 3°C = 0.54 Joules.


How much energy would you use to raise temperature of kg of water by 2 degrees Celsius?

The amount of energy required to raise the temperature of 1 kg of water by 1 degree Celsius is approximately 4,186 Joules. Therefore, to raise the temperature by 2 degrees Celsius, you would need about 8,372 Joules of energy.


How much heat energy is required to raise the temperature of 0.362 kg of copper from 23.0 degrees Celsius to 60.0 degrees Celsius?

The amount of heat energy required can be calculated using the formula: Q = mcΔT. Given m = 0.362 kg, c = 390 J/kg°C for copper, and ΔT = (60.0 - 23.0) = 37.0 °C, plug these values into the formula to find the heat energy required to raise the temperature of the copper.

Related Questions

Is a green heating system unable to go beyond 68 degrees?

If you are asking why a green heating system will not go above 68 degrees Fahrenheit then one reason is to save energy. The higher the temperature the more energy required to get to that temperature and the more energy required to keep that temperature.


How many kilowatts are required to raise the temperature of 1000 liters of water by 10 degrees centigrade?

Kilowatts is a unit of energy rate, while the temperature required to raise a specific volume of water by a specific amount of degrees is a unit of energy, not energy rate. The question cannot, therefore, be answered as stated. Please restate the question.


What term describes the amount of thermal energy that is required to raise the temperature of a substance by 1.0 degrees Celsius?

Specific heat capacity is the term that describes the amount of thermal energy required to raise the temperature of a substance by 1.0 degree Celsius.


What is substances specific heat?

The amount of heat required to increase the temperature of the substance to 1 degree greater than that of the initial temperature of the body!


How much energy is required to raise the temperature of 0.2 kg of aluminum from 15 degrees celsius to 18 degrees celsius?

The specific heat capacity of aluminum is 900 J/kg°C. The change in temperature is 3°C. Using the formula Q = mcΔT, the energy required would be 0.2 kg * 900 J/kg°C * 3°C = 540 J. So, the energy required to raise the temperature is 540 Joules.


Is temperature measured in calories?

No, temperature is not measured in calories. Temperature is typically measured in degrees Celsius (°C) or degrees Fahrenheit (°F), while calories are units of energy related to the amount of heat required to raise the temperature of one gram of water by one degree Celsius.


How much energy is required to raise the temperature of 0.2kg of aluminum for 15 degrees celsius to 18 degrees celsius?

The specific heat capacity of aluminum is 0.9 J/g°C. To calculate the energy required to raise the temperature of 0.2kg of aluminum by 3 degrees Celsius, you would use the formula: Energy = mass x specific heat capacity x temperature change. Substituting the values into the formula, Energy = 0.2kg x 0.9 J/g°C x 3°C = 0.54 Joules.


How much energy would you use to raise temperature of kg of water by 2 degrees Celsius?

The amount of energy required to raise the temperature of 1 kg of water by 1 degree Celsius is approximately 4,186 Joules. Therefore, to raise the temperature by 2 degrees Celsius, you would need about 8,372 Joules of energy.


How many kilojoules of energy are necessary to raise the temperature of 3 kilograms of cast iron from 30 degrees celsius to 120 degrees celsius?

I will use this formula. Some conversion will be required. ( I only know specific heat iron in J/gC ) q(Joules) = mass * specific heat * change in temperature Celsius 3 kilograms cast iron = 3000 grams q = (3000 g)(0.46 J/gC)(120 C - 30 C) = 124200 Joules (1 kilojoule/1000 joules) = 124.2 kilojoules of energy needed ===========================


How much heat energy is required to raise the temperature of 0.362 kg of copper from 23.0 degrees Celsius to 60.0 degrees Celsius?

The amount of heat energy required can be calculated using the formula: Q = mcΔT. Given m = 0.362 kg, c = 390 J/kg°C for copper, and ΔT = (60.0 - 23.0) = 37.0 °C, plug these values into the formula to find the heat energy required to raise the temperature of the copper.


How much energy is required to raise 21kg of water by 2 degrees Celsius?

The specific heat capacity of water is 4.18 J/g°C. To calculate the energy required to raise 21 kg of water by 2 degrees Celsius, use the formula: Energy = mass x specific heat capacity x temperature change. Plugging in the values, the energy required is 21,084 Joules.


What is an amount of energy needed to raise kg of a subsyance1c?

The amount of energy needed to raise the temperature of a substance is calculated using the formula ( Q = mc\Delta T ), where ( Q ) is the heat energy (in joules), ( m ) is the mass of the substance (in kilograms), ( c ) is the specific heat capacity (in joules per kilogram per degree Celsius), and ( \Delta T ) is the change in temperature (in degrees Celsius). This formula helps determine how much energy is required to achieve a desired temperature increase for a given mass of a substance.