How the acceleration of a body related to its mass and the resultant force acting on it?
When there are balanced forces acting on an object, the resultant force is zero. This means that the forces are equal in magnitude and opposite in direction, resulting in no acceleration of the object.
it happens when an object has an equivalent forward and back ward force
by subtracting the smallest number from the biggest.
Yes, if a book is stationary on a table, the forces acting on it are in equilibrium. The resultant force acting on the book would be zero, as the forces are balanced and there is no net force causing any acceleration or movement.
The sum of forces acting on an object is known as the net force. It is calculated by adding up all the individual forces acting on the object, taking into account their directions and magnitudes. This net force determines the object's acceleration according to Newton's second law of motion.
Force = Mass x Acceleration Note that the "Force" here refers to the resultant force if there is more than one force acting on the object.
resultant force is the overall size of force acting on the object. the acceleration increases the amount of newton so the resultant becomes increased. the force realating to the accelaration of the boat is the amount of increasiment in the newtons. hope this helps everyone please appreciate this time as i have sprent an hour for this answer
When there are balanced forces acting on an object, the resultant force is zero. This means that the forces are equal in magnitude and opposite in direction, resulting in no acceleration of the object.
it happens when an object has an equivalent forward and back ward force
by subtracting the smallest number from the biggest.
Yes, if a book is stationary on a table, the forces acting on it are in equilibrium. The resultant force acting on the book would be zero, as the forces are balanced and there is no net force causing any acceleration or movement.
The sum of forces acting on an object is known as the net force. It is calculated by adding up all the individual forces acting on the object, taking into account their directions and magnitudes. This net force determines the object's acceleration according to Newton's second law of motion.
yes, since the forces are acting on just one body, the mass (m) in the equation F=ma is not changing, which would mean that the two accelerations (a) would have to be different. If the two accelerations are different then there is total acceleration in one direction (the resultant acceleration).
0. An object in equilibrium has constant velocity, which makes its acceleration 0. Since net force=mass times acceleration, this would make the net force zero. Note that there could be multiple forces acting on the object, but since it is in equilibrium they would have to be equal and opposite in direction, to cancel all of the forces out. This would make the net force zero.
You can find the acceleration of a pushed object by dividing the net force acting on the object by its mass, using the formula a = F/m, where a is the acceleration, F is the net force, and m is the mass of the object.
For a given mass, the acceleration is directly proportional to the net force acting on the mass, and is in the same direction as the net force. In other words, the larger the net force acting on an object, the greater its acceleration. When the net force is zero, the object is either at rest or moving with a constant velocity.
The overall force acting on an object is the vector sum of all individual forces acting on the object. It takes into account both the magnitude and direction of each force acting on the object. This overall force determines the object's acceleration according to Newton's second law of motion.