answersLogoWhite

0

If the current in a wire is doubled, the magnetic field intensity around the wire will also double. This is because the magnetic field strength is directly proportional to the current flowing through the wire according to Ampere's Law.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

Why do the magnetic forces acting on the coil change as the current running through the coil changes?

The magnetic forces acting on the coil change with the current because the strength of the magnetic field produced by the current in the coil is directly proportional to the current flowing through it. As the current changes, the magnetic field strength changes, leading to a change in the magnetic forces acting on the coil.


What is the direction of the induced current in a loop when there is a change in magnetic field direction?

When there is a change in the direction of the magnetic field in a loop, an induced current is generated in the loop in a direction that opposes the change in the magnetic field.


What are three ways you can change the magnetic field produced by a current?

You can change the magnetic field produced by a current by altering the strength of the current flowing through the conductor, changing the direction of the current flow, or varying the distance between the conductor and the point where you are measuring the magnetic field.


Which happens to the magnetic field of a wire when you change the direction of the current in the wire?

The magnetic field direction around the wire reverses when the direction of the current in the wire is changed. This is due to the right-hand rule that states the direction of the magnetic field is perpendicular to the direction of current flow.


How do you change the direction of a magnetic field?

You can change the direction of a magnetic field by reversing the flow of electric current in a wire or by changing the orientation of a permanent magnet. Alternating the direction of current in a coil can also reverse the direction of the magnetic field it produces.

Related Questions

Why do the magnetic forces acting on the coil change as the current running through the coil changes?

The magnetic forces acting on the coil change with the current because the strength of the magnetic field produced by the current in the coil is directly proportional to the current flowing through it. As the current changes, the magnetic field strength changes, leading to a change in the magnetic forces acting on the coil.


What is the direction of the induced current in a loop when there is a change in magnetic field direction?

When there is a change in the direction of the magnetic field in a loop, an induced current is generated in the loop in a direction that opposes the change in the magnetic field.


Does current affect electromagnetism?

Does current affect electromagnetism? No. Does current affect magnetic fields? Yes. The laws (Maxwell's Equations) pertaining to electromagnetism is constant and will not change regardless of current applied. However, Maxwell's equations does dictate that a change in current will essentially result in a change in magnetic fields. Current flow will produce a magnetic field perpendicular to the current direction.


What are three ways you can change the magnetic field produced by a current?

You can change the magnetic field produced by a current by altering the strength of the current flowing through the conductor, changing the direction of the current flow, or varying the distance between the conductor and the point where you are measuring the magnetic field.


Can DC be used for transformer?

Basis of transformer is change in current. Whenever current flows it causes magnetic field. Current flow in primary coil causes magnetic field around secondary. Since current is changing as in the case of AC, magnetic filed also changes. As per Faraday's law change in magnetic field causes induced voltage at secondary coil. In case of DC there wont be any change in current, thus no change in magnetic field leading to no induced voltage.


What is the statment of lenz law?

The direction of an induced emf or current is such that the magnetic field created by the induced current opposes the change in magnetic flux that created the current.


What does the lenz law state?

The direction of an induced emf or current is such that the magnetic field created by the induced current opposes the change in magnetic flux that created the current.


Which happens to the magnetic field of a wire when you change the direction of the current in the wire The magnetic field?

The magnetic field collapses to zero, then builds up again for the current in the opposite direction.


Which happens to the magnetic field of a wire when you change the direction of the current in the wire?

The magnetic field direction around the wire reverses when the direction of the current in the wire is changed. This is due to the right-hand rule that states the direction of the magnetic field is perpendicular to the direction of current flow.


Why it apposes sudden changes in current?

I assume you are asking about inductors... The inductor has a winding, sometimes around a ferrous core. Current flow creates a magnetic field. When you try to change the current, the magnetic field changes, but that magnetic changing resists the change in current. Mathematically, this is expressed as di/dt = v*L, or Rate of change of Current is equal to Voltage * Inductance. So, the larger the Inductance, the harder it is (requiring larger Voltage) to change Current.


What happen to magnetic compass if the current is changed?

If an electric current flows through a wire, it will create a magnetic field. ... a ship or an airplane, it can damage or otherwise change the ship's magnetic compass.


How do you change the direction of a magnetic field?

You can change the direction of a magnetic field by reversing the flow of electric current in a wire or by changing the orientation of a permanent magnet. Alternating the direction of current in a coil can also reverse the direction of the magnetic field it produces.