answersLogoWhite

0

To increase the electric force between two charged particles by a factor of 25, you would need to reduce the distance between them to 1/5 of the original distance. This is because the electric force between two charged particles is inversely proportional to the square of the distance between them. By decreasing the distance, the force will increase by the square of the decrease in distance.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

How does the electric force between two charged particles change if the distance between them is decreased by a factor of 3?

The electric force between two charged particles is inversely proportional to the square of the distance between them. If the distance is decreased by a factor of 3, the electric force will increase by a factor of (1/3)^2 = 1/9. This means the force will increase by a factor of 9 when the distance decreases by a factor of 3.


What could you do to increase the electric force between two charged particles by a factor of 16?

You would need to increase the charge on one or both of the particles by a factor of 4. Electric force is directly proportional to the product of the charges, so increasing the charge will increase the force. Another way would be to decrease the distance between the particles by a factor of 4, as electric force is inversely proportional to the square of the distance between the charges.


How would you change the distance between two positively charged particles to increase the electric potential energy by a factor of 4?

To increase the electric potential energy of two positively charged particles by a factor of 4, you would need to decrease the distance between the particles by a factor of 2 (since potential energy is inversely proportional to distance). This is because potential energy between charged particles is given by the equation PE = k(q1*q2)/r, where r is the distance between the particles.


What could do increase the electric force between two charged particles by a factor of 16?

To increase the electric force between two charged particles by a factor of 16, you would need to increase the charge on one or both of the particles by a factor of 4, since force is directly proportional to the product of the charges. Alternatively, you could decrease the distance between the particles by a factor of 4, since force is inversely proportional to the square of the distance between the charges.


What happens to the electric force if the distance between two particles is doubled?

If the distance between two particles is doubled, the electric force between them decreases by a factor of 4. This is because the electric force is inversely proportional to the square of the distance between the particles, according to Coulomb's Law.

Related Questions

How does the electric force between two charged particles change if the distance between them is decreased by a factor of 3?

The electric force between two charged particles is inversely proportional to the square of the distance between them. If the distance is decreased by a factor of 3, the electric force will increase by a factor of (1/3)^2 = 1/9. This means the force will increase by a factor of 9 when the distance decreases by a factor of 3.


What could you do to increase the electric force between two charged particles by a factor of 16?

You would need to increase the charge on one or both of the particles by a factor of 4. Electric force is directly proportional to the product of the charges, so increasing the charge will increase the force. Another way would be to decrease the distance between the particles by a factor of 4, as electric force is inversely proportional to the square of the distance between the charges.


How would you change the distance between two positively charged particles to increase the electric potential energy by a factor of 4?

To increase the electric potential energy of two positively charged particles by a factor of 4, you would need to decrease the distance between the particles by a factor of 2 (since potential energy is inversely proportional to distance). This is because potential energy between charged particles is given by the equation PE = k(q1*q2)/r, where r is the distance between the particles.


What could do increase the electric force between two charged particles by a factor of 16?

To increase the electric force between two charged particles by a factor of 16, you would need to increase the charge on one or both of the particles by a factor of 4, since force is directly proportional to the product of the charges. Alternatively, you could decrease the distance between the particles by a factor of 4, since force is inversely proportional to the square of the distance between the charges.


What happens to the electric force if the distance between two particles is doubled?

If the distance between two particles is doubled, the electric force between them decreases by a factor of 4. This is because the electric force is inversely proportional to the square of the distance between the particles, according to Coulomb's Law.


How does the electric force between two charged particles change if the distance between them is increased by a factor of 2?

The electric force between two charged particles decreases by a factor of 4 when the distance between them is increased by a factor of 2. The electric force is inversely proportional to the square of the distance between the charged particles.


How does the electric potential energy between two positive charged particles change if the distance between them is reduced by a factor of 3?

The electric potential energy between two positive charged particles will increase by a factor of 9 (3 squared) if the distance between them is reduced by a factor of 3. This is because the potential energy is inversely proportional to the distance between the charges squared.


How do you increase the distance between the particles affect the force between them?

me


How does the electric force between two charged particles change if the distance between them is increased by a factor of two?

The electric force between two charged particles is inversely proportional to the square distance between them.Accordingly, it is reduced by a factor of 9


How does the electric force between two charged particles charge is increased by a factor of 2?

By increasing the distance between them by sqrt(2).


In addition to the distance between to particles what other factor determines the magnitude of the electric force between the particles?

The magnitude of the electric force between particles is also determined by the amount of charge on each particle. The greater the charge, the stronger the electric force.


Which change increases the electric force between objects?

Increasing the charge on the objects or decreasing the distance between them will increase the electric force between them.