if you add more weight or mass to any thing, it will incease its momentum. lets say you are grocery shopping and you add 5 bags of cat liter to your cart. inertia will increase and your momentum will increase. it easy, just picture it in you head.
your welcome!!!!
Momentum = mass x velocity. Here velocity is constant. So momentum is directly proportional to the mass. Hence as mass decreases momentum too decreases proportionaly. If mass is reduced to half of its original then momentum also gets reduced to half of its original
When the mass decreases, and all other factors remain constant, the momentum of an object will also decrease since momentum is directly proportional to mass. This is because momentum is defined as the product of mass and velocity.
If mass doubles, momentum also doubles as momentum is directly proportional to mass. This is because momentum is the product of an object's mass and its velocity, so if mass increases, momentum will increase as well.
When velocity doubles, the momentum also doubles because momentum is directly proportional to velocity in a linear relationship. Momentum is equal to mass multiplied by velocity, so when velocity doubles, momentum will also double as long as the mass remains constant.
The angular velocity of an object typically increases as it decreases in size, due to the conservation of angular momentum. This is because the moment of inertia decreases as the object's size decreases, causing the angular velocity to increase to maintain the same angular momentum.
Momentum = mass x velocity. Here velocity is constant. So momentum is directly proportional to the mass. Hence as mass decreases momentum too decreases proportionaly. If mass is reduced to half of its original then momentum also gets reduced to half of its original
When the mass decreases, and all other factors remain constant, the momentum of an object will also decrease since momentum is directly proportional to mass. This is because momentum is defined as the product of mass and velocity.
If mass doubles, momentum also doubles as momentum is directly proportional to mass. This is because momentum is the product of an object's mass and its velocity, so if mass increases, momentum will increase as well.
When velocity doubles, the momentum also doubles because momentum is directly proportional to velocity in a linear relationship. Momentum is equal to mass multiplied by velocity, so when velocity doubles, momentum will also double as long as the mass remains constant.
The angular velocity of an object typically increases as it decreases in size, due to the conservation of angular momentum. This is because the moment of inertia decreases as the object's size decreases, causing the angular velocity to increase to maintain the same angular momentum.
As the radius of rotation decreases, the number of revolutions of a rubber stopper increases. This is due to the conservation of angular momentum - with a smaller radius, the rotational speed must increase to maintain the same angular momentum.
An object that decreases its speed also decreases the magnitude of its velocity and decreases the magnitude of its momentum. Momentum is mass time velocity. Less velocity, less momentum. Technically, velocity is a vector and therefor momentum is a vector. One can speak of smaller or larger magnitudes of a vector, but not smaller and larger vectors because vectors have magnitude and direction. Speed is the magnitude of velocity.
When energy is absorbed by a wave, the wave's amplitude decreases and its intensity weakens. This can cause the wave to lose momentum and eventually dissipate.
You can't think of momentum as simply "increasing" and "decreasing" - you have to consider momentum as a vector.If in a collision one object's momentum changes by a certain amount, call it "a", the momentum of the other object will change by the opposite amount, "-a" - both "a" and "-a" are vectors that add up to zero. If you consider only the magnitudes of the momentum, by conservation of energy the momenta can't both increase - but they can certainly both decrease, when objects collide head-on.
The momentum of the moving bumper car decreases because some of its momentum is transferred to the stationary bumper car during the collision. According to the law of conservation of momentum, the total momentum of the system (both cars) remains the same before and after the collision.
If the string length doubles, the frequency of the vibrating string decreases by half. This is because frequency is inversely proportional to the length of the string.
If the mass of an object increases, its momentum also increases. Momentum is directly proportional to mass, so an increase in mass will result in a proportional increase in momentum, given that the velocity remains constant.