It would be 12 plus the other number with a minus of 7. Then you would add the energy with the force and get something along the lines of a wrong answer because i have no idea what im doing.. Hope that helps
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
In an ideal machine, if you exert an input force over a greater distance than the output force, the input force will be smaller than the output force. This is because work input is equal to work output in an ideal machine, and work is calculated as force times distance. Therefore, if the input force acts over a greater distance, the output force must be larger to balance the work done.
In an ideal machine, the input force will be smaller than the output force when the input force is exerted over a greater distance than the output force. This is because work input and work output must be equal in an ideal machine, and since work = force x distance, a smaller input force over a greater distance will result in a larger output force over a shorter distance to maintain equilibrium.
The quantity that measures how much a machine multiplies force or distance is known as mechanical advantage. It is calculated as the ratio of the output force to the input force, or the ratio of the input distance to the output distance in a machine.
Type your answer here... The actual mechanical advantage.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
In an ideal machine, if you exert an input force over a greater distance than the output force, the input force will be smaller than the output force. This is because work input is equal to work output in an ideal machine, and work is calculated as force times distance. Therefore, if the input force acts over a greater distance, the output force must be larger to balance the work done.
In an ideal machine, the input force will be smaller than the output force when the input force is exerted over a greater distance than the output force. This is because work input and work output must be equal in an ideal machine, and since work = force x distance, a smaller input force over a greater distance will result in a larger output force over a shorter distance to maintain equilibrium.
The quantity that measures how much a machine multiplies force or distance is known as mechanical advantage. It is calculated as the ratio of the output force to the input force, or the ratio of the input distance to the output distance in a machine.
Type your answer here... The actual mechanical advantage.
If the mechanical advantage of a simple machine is increased, the distance the input force must be applied decreases in relation to the output force. This means that you can exert less input force over a longer distance to achieve a greater output force over a shorter distance.
That means that if you use a simple machine to apply less force, you need to compensate by applying the force over a larger distance - for example, to lift up a weight or do some other work.
Work Input- The work done on a machine as the input force acts through the input distance. Work Output - The work done by a machine as the output force acts through the output distance (What the machine does to the object (dependent on the force) to increase the output distance).
To calculate input force, divide the output force by the mechanical advantage of the machine or system. Input force = Output force / Mechanical advantage. The output force is the force exerted by the machine, while the input force is the force applied to the machine.
The input force is the force applied to a machine to make it work, while the output force is the force produced by the machine as a result of the input force. In simple terms, the input force is what you put into a machine, and the output force is what you get out of it.
To calculate the mechanical advantage of a compound machine, you need to know the input force applied to the machine, the output force produced by the machine, and the distance over which the input and output forces are exerted. By comparing the input force to the output force, you can determine the mechanical advantage of the compound machine.
The difference between and input force and an output force is that an output force is force exerted by a machine, and an input force is force exerted on a machine.