No, you would not land in the same place since the train is moving. Your horizontal velocity would be combined with the train's velocity, affecting your landing position.
The motion of a train on a moving track depends on the reference frame you choose. In the train's frame of reference, it may appear stationary or moving at a constant speed. However, in an external, stationary frame of reference, the train would appear to be moving at a different velocity that combines the train's speed with the speed of the track.
If you see a clock on a very fast train moving by you, you would observe that the clock appears to be moving faster than normal due to the train's speed. This is because of the relative motion between you and the train.
If you are *not* dealing with special relativity and its effects, then the answer becomes far more simple. If you are not moving and are standing on the ground, then you see a train moving past you a fast speed. In this case, the reference "frame" (not necessarily a point) is you and the object being described is the train. If you flipped the roles, then it would be someone on the train watching you as the train moves. However, since it is from the train's perspective, it does not appear that the train is moving, but rather that you are moving away from the train, along with the rest of the world that passes the train by. This is described as the train being the reference frame and you would be the object described by the train. This is, again, just Galilean relativity. Special relativity puts a few twists on it and has some additional effects.
The passengers reference point ! The passengers are moving at the same speed as the train.
No, without any external reference points to visually determine movement, you would not be able to perceive that you are moving on a train if there is no friction. The lack of friction would eliminate the physical sensations typically associated with movement.
A fast-moving train. apex community (;
Relative motion. To talk about a train moving at a certain speed usually means that the train is moving at a certain speed relative to a stationary observer (relative to the ground). This however also means that a passenger traveling in said train would experience the ground (and every other stationary object) as the moving object. This is why a stationary train may seem to be moving to passengers of an already moving train.
At the train station
The motion of a train on a moving track depends on the reference frame you choose. In the train's frame of reference, it may appear stationary or moving at a constant speed. However, in an external, stationary frame of reference, the train would appear to be moving at a different velocity that combines the train's speed with the speed of the track.
If the train is moving at 50 mph and the passenger is walking at 2 mph, people on the train would see her moving at 2 mph, while people outside the train would see her moving at 48 mph. 50mph - 2 mph = 48 mph
If you see a clock on a very fast train moving by you, you would observe that the clock appears to be moving faster than normal due to the train's speed. This is because of the relative motion between you and the train.
If you are *not* dealing with special relativity and its effects, then the answer becomes far more simple. If you are not moving and are standing on the ground, then you see a train moving past you a fast speed. In this case, the reference "frame" (not necessarily a point) is you and the object being described is the train. If you flipped the roles, then it would be someone on the train watching you as the train moves. However, since it is from the train's perspective, it does not appear that the train is moving, but rather that you are moving away from the train, along with the rest of the world that passes the train by. This is described as the train being the reference frame and you would be the object described by the train. This is, again, just Galilean relativity. Special relativity puts a few twists on it and has some additional effects.
The passengers reference point ! The passengers are moving at the same speed as the train.
No, without any external reference points to visually determine movement, you would not be able to perceive that you are moving on a train if there is no friction. The lack of friction would eliminate the physical sensations typically associated with movement.
Someone walking toward the back of the train would have a greater speed relative to you if you are stationary inside the train. This is because their speed would be the combination of their walking speed and the speed of the train moving forward.
This is known as the Doppler effect. As the train approaches you, the wavelength of the sound waves it emits are compressed, and therefore the whistle sounds higher. When the train is moving away, the wavelengths are extended, causing the whistle to sound lower. If the train were not moving at all, the pitch you would hear from the whistle would be somewhere between the high and low pitches you hear when the train is moving.
This is known as the Doppler effect. As the train approaches you, the wavelength of the sound waves it emits are compressed, and therefore the whistle sounds higher. When the train is moving away, the wavelengths are extended, causing the whistle to sound lower. If the train were not moving at all, the pitch you would hear from the whistle would be somewhere between the high and low pitches you hear when the train is moving.