answersLogoWhite

0

In the acceleration equation, the term vi represents the initial velocity, which is the velocity of an object at the beginning of the time period being considered. This term is subtracted from the final velocity (vf) to determine the change in velocity over time (t), which is then used to calculate the acceleration of the object.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What is vi equals vf-at?

Yes recalling the first equation of motion ie Vf = Vi + at Here Vf is final velocity and Vi is the initial velocity. a the acceleration and t is the time Now taking at on the other side ie left side we get Vf - at = Vi This is what mentioned here.


How do you calculate beginning speed of an object?

The beginning speed of an object can be calculated using the equation: Vf = Vi + at where: Vf = final speed Vi = initial speed a = acceleration t = time You can rearrange the equation to solve for Vi: Vi = Vf - at


What is the linear acceleration equation and how is it used to calculate the acceleration of an object moving in a straight line?

The linear acceleration equation is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the acceleration of an object moving in a straight line by finding the change in velocity over time.


What is the correct formula manipulation to find acceleration when using the equation vf2 vi2 2ad?

To find acceleration using the equation vf^2 = vi^2 + 2ad, you can rearrange the formula to isolate 'a'. First, subtract vi^2 from both sides to get vf^2 - vi^2 = 2ad. Then, divide both sides by 2d to solve for acceleration: a = (vf^2 - vi^2) / (2d).


What is the equation for linear acceleration and how is it used to calculate the rate of change in velocity of an object?

The equation for linear acceleration is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the rate of change in velocity of an object by finding the difference between the final and initial velocities, and dividing that by the time taken for the change to occur.

Related Questions

What is vi equals vf-at?

Yes recalling the first equation of motion ie Vf = Vi + at Here Vf is final velocity and Vi is the initial velocity. a the acceleration and t is the time Now taking at on the other side ie left side we get Vf - at = Vi This is what mentioned here.


How do you calculate beginning speed of an object?

The beginning speed of an object can be calculated using the equation: Vf = Vi + at where: Vf = final speed Vi = initial speed a = acceleration t = time You can rearrange the equation to solve for Vi: Vi = Vf - at


How to solve vf vi plus at equation steps?

To solve the equation vf = vi + at, where vf is the final velocity, vi is the initial velocity, a is the acceleration, and t is the time, you first need to identify the values of vi, a, and t. Then, substitute these values into the equation and solve for vf by adding vi and the product of a and t. This equation is derived from the kinematic equation vf = vi + at, which relates the final velocity of an object to its initial velocity, acceleration, and time.


What is the linear acceleration equation and how is it used to calculate the acceleration of an object moving in a straight line?

The linear acceleration equation is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the acceleration of an object moving in a straight line by finding the change in velocity over time.


What is the correct formula manipulation to find acceleration when using the equation vf2 vi2 2ad?

To find acceleration using the equation vf^2 = vi^2 + 2ad, you can rearrange the formula to isolate 'a'. First, subtract vi^2 from both sides to get vf^2 - vi^2 = 2ad. Then, divide both sides by 2d to solve for acceleration: a = (vf^2 - vi^2) / (2d).


If an object is accelerating what equation relates the acceleration of that object the initial velocity and the final velocity and time?

Vf = Vi + at Where Vf = final velocity Vi = initial velocity a = acceleration t = time


What is the equation for linear acceleration and how is it used to calculate the rate of change in velocity of an object?

The equation for linear acceleration is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the rate of change in velocity of an object by finding the difference between the final and initial velocities, and dividing that by the time taken for the change to occur.


What is the equation for average acceleration?

A equals Vf minus Vi divided by time equals triangle v divided by time


How do you find the initial velocity just with the accelaration final velocity and time?

To find acceleration, you take Vi [Initial Velocity] and you subtract if from Vf [Final Velocity.] (Vi - Vf) If they Vi and Vf are already given, you take the two givens and you subtract them from each other. Vi minus Vf. Do not do Vf minus Vi or it will be wrong. After you do that, you divide your answer from T [Time] (Vi - Vf) a= _____ t Once you get your answer, that will be your acceleration.


What is the formula used for calculating acceleration?

For acceleration, I often use these two formulas (if needed: a = acceleration vf = final velocity vi = initial velocity) (1) a = (vf + vi) / 2 and/or (2) a = (vf - vi)/t On Earth, gravity, friction, and air resistance are the main forces that slow an object down.


How is acceleration related to the distance and time elapsed?

acceleration cannot be calculated from these values alone unless one makes a few assumptions: Vf=final velocity Vi=initial velocity a=acceleration d=displacement t=time assume Vi=0 (Vf-Vi)/t=a Vf=at+Vi Vf**2=Vi**2+2ad (at)**2=2ad aatt=2ad att=2d a=2d/t**2


What formula used to calculate acceleration?

The formula used to calculate acceleration is acceleration = change in velocity / time taken. This can also be represented as a = (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time.