A copy machine is a man-made electromechanical system.
The input to it is the blank paper, toner, and electrical energy.
The output from it is the copies that spit out.
A fax machine is considered both an input and output device. It receives data as input (the document being faxed) and sends the data as output to another fax machine.
To calculate input force, divide the output force by the mechanical advantage of the machine or system. Input force = Output force / Mechanical advantage. The output force is the force exerted by the machine, while the input force is the force applied to the machine.
The input force is the force applied to a machine to make it work, while the output force is the force produced by the machine as a result of the input force. In simple terms, the input force is what you put into a machine, and the output force is what you get out of it.
If the input work equals the output work, the machine has 100% efficiency, meaning it is able to convert all the input work into useful output work without any losses. An efficient machine is desirable as it maximizes the output for a given input.
In a compound machine, the input force is applied to the first machine and then becomes the output force for the next machine in the sequence. The output force of the first machine becomes the input force for the next machine, and so on. Therefore, the input and output forces of the parts of a compound machine are related as they are transferred from one machine to the next within the system.
1111111000
Output
Output(input), or O(i)
A fax machine is considered both an input and output device. It receives data as input (the document being faxed) and sends the data as output to another fax machine.
If you want to make an exact copy of a recording from machine "A" to machine "B", a dubbing cord goes from the output terminals of machine "A" to the input terminals of machine "B". The word "dub" means "a copy of" in recorded music.
Output is always greater than input. The output is multiplied from input.
To calculate input force, divide the output force by the mechanical advantage of the machine or system. Input force = Output force / Mechanical advantage. The output force is the force exerted by the machine, while the input force is the force applied to the machine.
The input force is the force applied to a machine to make it work, while the output force is the force produced by the machine as a result of the input force. In simple terms, the input force is what you put into a machine, and the output force is what you get out of it.
If the input work equals the output work, the machine has 100% efficiency, meaning it is able to convert all the input work into useful output work without any losses. An efficient machine is desirable as it maximizes the output for a given input.
Input force is the force applied to an object, while output force is the force exerted by the object in response. In a simple machine, the input force is the force applied to it, and the output force is the force produced by the machine to do work. The relationship between input and output forces determines the efficiency of a machine.
In a compound machine, the input force is applied to the first machine and then becomes the output force for the next machine in the sequence. The output force of the first machine becomes the input force for the next machine, and so on. Therefore, the input and output forces of the parts of a compound machine are related as they are transferred from one machine to the next within the system.
The mechanical advantage of a machine compares the input force applied to the machine with the output force produced by the machine. It is calculated as the ratio of the output force to the input force and indicates how much a machine amplifies or reduces the input force.