No, it is not a chemical form of energy.
Gravitational potential energy is highest at the highest point of the pendulum's swing, usually at the top of its arc. At this point, the pendulum possesses the maximum potential energy stored due to its position in the Earth's gravitational field.
At this point, at the top of the swing, the pendulum has potential energy. As it drops it loses potential and gains kinetic energy. At the fastest point, as the pendulum reached the bottom of the swing, it has kinetic energy. It then loses kinetic energy and gains potential energy as it swings up to the other side.
Potential energy is the greatest at the top of the pendulum swing, precisely as it is stopped. Kinetic energy is greatest at the bottom of its swing as it is moving its fastest. Between the two points the energies are converting into one another.
The positions of maximum potential energy in a pendulum are at the highest points of its swing, where the pendulum momentarily stops before changing direction. This corresponds to the top-most points of the swing, which are generally labeled as positions A and C in diagrams.
The pendulum acts as an escape(Anchor) mechanism faciltating the movements of the clock - face e.g. the hour and minute hands . "An escapement is the mechanism in a mechanical clock that maintains the swing of the pendulum and advances the clock's wheels at each swing. " Excerpt from Wikipedia . See links .
If at the top of the swing the pendulum is STOPPED then it has zero kinetic energy.
A pendulum transfers potential gravitational energy (at the top of its swing) to kinetic energy (movement at the bottom of the swing) and then back again (at the top on the other side).
Gravitational potential energy is highest at the highest point of the pendulum's swing, usually at the top of its arc. At this point, the pendulum possesses the maximum potential energy stored due to its position in the Earth's gravitational field.
At this point, at the top of the swing, the pendulum has potential energy. As it drops it loses potential and gains kinetic energy. At the fastest point, as the pendulum reached the bottom of the swing, it has kinetic energy. It then loses kinetic energy and gains potential energy as it swings up to the other side.
Potential energy is the greatest at the top of the pendulum swing, precisely as it is stopped. Kinetic energy is greatest at the bottom of its swing as it is moving its fastest. Between the two points the energies are converting into one another.
The positions of maximum potential energy in a pendulum are at the highest points of its swing, where the pendulum momentarily stops before changing direction. This corresponds to the top-most points of the swing, which are generally labeled as positions A and C in diagrams.
As the pendulum stops swinging, its maximum kinetic energy (the initial energy at the beginning of the swing) decreases, and its potential energy increases. Once the pendulum stops, it will have zero kinetic energy and maximum potential energy.
When the pendulum is at the top of its swing, the speed is zero so the KE is also zero.
The pendulum acts as an escape(Anchor) mechanism faciltating the movements of the clock - face e.g. the hour and minute hands . "An escapement is the mechanism in a mechanical clock that maintains the swing of the pendulum and advances the clock's wheels at each swing. " Excerpt from Wikipedia . See links .
On a pendulum, the greatest potential energy is at the highest point of the swing on either side, and the greatest kinetic energy is at the bottom of the swing. On a roller coaster, the greatest potential energy is at the top of a hill, and the greatest kinetic energy is at the bottom of the hill.
A swinging pendulum has potential energy at each end of it's travel (when it stops momentarily) This energy is converted to kinetic energy as it swings down and back to potential energy as it swings up the other way.
The highest point of the pendulums swing is when the potential energy is at its highest and the kinetic energy is at its lowest. Kinetic energy is at its highest when at the lowest point of its swing, or equilibrium position, this is when the potential energy is at zero.