answersLogoWhite

0

In an adiabatic process, where there is no heat exchange with the surroundings, the change in internal energy is equal to the negative of the work done. This relationship is a result of the first law of thermodynamics, which states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Related Questions

What is the relationship between the work done in an adiabatic process and the change in internal energy of a system?

In an adiabatic process, the work done is equal to the change in internal energy of a system.


What is the work done in an adiabatic process?

In an adiabatic process, no heat is exchanged with the surroundings. The work done is the change in internal energy of the system, which is equal to the pressure times the change in volume.


What is the relationship between the adiabatic process and the change in enthalpy (H) of a system?

In an adiabatic process, there is no heat exchange with the surroundings. This means that the change in enthalpy (H) of the system is equal to the change in internal energy (U).


What is the relationship between reversible adiabatic expansion work and the change in internal energy of a system?

During reversible adiabatic expansion, the work done by the system is equal to the change in internal energy.


What is the relationship between adiabatic processes and the change in enthalpy (H)?

In adiabatic processes, there is no heat exchange with the surroundings, so the change in enthalpy (H) is equal to the change in internal energy (U). This means that in adiabatic processes, the change in enthalpy is solely determined by the change in internal energy.


Why does temperature of gas drops in an adiabatic process?

In an adiabatic process, no heat is exchanged between the system and its surroundings. When a gas expands without heat input, the gas does work on its surroundings and loses internal energy, leading to a decrease in temperature.


What is an adiabatic process?

An adiabatic process is one in which there is no heat transfer into or out of the system. This means that any change in internal energy of the system is solely due to work done on or by the system. Adiabatic processes are often rapid and can lead to changes in temperature and pressure without heat exchange.


Why do adiabatic temperature changes occur?

In adiabatic process heat is neither added nor removed from the system. So the work done by the system (expansion) in adiabatic process will result in decrease of internal energy of that system (From I st law). As internal energy is directly proportional to the change in temperature there will be temperature drop in an adiabatic process.


What is adiabatic proccess?

An adiabatic process is one in which there is no transfer of heat between a system and its surroundings. This means that the change in internal energy of the system is solely due to work done on or by the system. Adiabatic processes are often characterized by a change in temperature without any heat exchange.


What is the work done by an adiabatic process?

The work done by an adiabatic process is the change in internal energy of a system without any heat transfer occurring. This means that the work done is solely due to changes in pressure and volume of the system.


How does the temperature of gas change when it is compressed if the process is adiabatic?

In an adiabatic process, the temperature is increased when it is compressed. There is an increase in internal kinetic energy, and because temperature is related to kinetic energy, it is also increased.


What does the word adiabatic mean?

Adiabatic refers to a process in thermodynamics where there is no heat exchange with the surroundings. This means that the change in internal energy of the system is solely due to work being done on or by the system. Adiabatic processes are often rapid and can result in changes in temperature or pressure.