No, it is not possible for a person to have zero mechanical energy. Mechanical energy is the sum of an object's kinetic and potential energy, and as long as the person is in motion or has the potential to be in motion, they will have mechanical energy.
Yes - mechanical energy includes both gravitational potential energy, and kinetic energy. If an object's momentum is zero, then its kinetic energy will also be zero, but its potential energy can be positive or negative, depending on whether the object is above or below the chosen reference level.
the lowest achievable energy state; the de-energization of electrical sources that includes discharging capacitive and inductive elements (absence of voltage and current) and blocking or totally releasing mechanical energy (kinetic or potential).
Mechanical Energy= Potential energy+ Kinetic energy, so for the mechanical energy to be equal to be potential energy, the kinetic energy must be 0.
Yes, an object's mechanical energy can be equal to its gravitational potential energy. Mechanical energy is the sum of an object's kinetic and potential energy, and gravitational potential energy is a type of potential energy determined by an object's position in a gravitational field. When the object is at rest or its kinetic energy is zero, its mechanical energy will equal its gravitational potential energy.
Yes. Mechanical energy is the sum of potential energy and kinetic energy; this includes gravitational potential energy.
Space-energy, also known as zero-point energy is the lowest possible energy that a quantum mechanical physical system may have and is the energy of the ground state, which is non-zero.
AnswerZero-point energy (not to be confused with Vacuum Energy) is the lowest possible energy that a quantum mechanical physical system may have and is the energy of the ground state. This energy comes from the fact that after you remove all thermal and kinetic energy from an atom there is still quantum mechanical harmonic vibration that arises due to the Heisenberg Uncertainty Principle. This energy, so far, can not be taken away from a system.
Mechanical zero is where all the sights are set to zero. Battle sight zero is after the person has properly zeroed their weapon at a 25 meter range.
Yes - mechanical energy includes both gravitational potential energy, and kinetic energy. If an object's momentum is zero, then its kinetic energy will also be zero, but its potential energy can be positive or negative, depending on whether the object is above or below the chosen reference level.
no,it also cant have inertia
Yes. Mechanical energy is the sum of potential energy and kinetic energy; this includes gravitational potential energy.
AnswerZero-point energy (not to be confused with Vacuum Energy) is the lowest possible energy that a quantum mechanical physical system may have and is the energy of the ground state. This energy comes from the fact that after you remove all thermal and kinetic energy from an atom there is still quantum mechanical harmonic vibration that arises due to the Heisenberg Uncertainty Principle. This energy, so far, can not be taken away from a system.
the lowest achievable energy state; the de-energization of electrical sources that includes discharging capacitive and inductive elements (absence of voltage and current) and blocking or totally releasing mechanical energy (kinetic or potential).
Mechanical Energy= Potential energy+ Kinetic energy, so for the mechanical energy to be equal to be potential energy, the kinetic energy must be 0.
Yes, an object's mechanical energy can be equal to its gravitational potential energy. Mechanical energy is the sum of an object's kinetic and potential energy, and gravitational potential energy is a type of potential energy determined by an object's position in a gravitational field. When the object is at rest or its kinetic energy is zero, its mechanical energy will equal its gravitational potential energy.
Yes. Mechanical energy is the sum of potential energy and kinetic energy; this includes gravitational potential energy.
Absolute zero is the theoretical lowest possible temperature. More formally, it is the theoretical temperature at which entropy reaches its minimum value. The laws of thermodynamics state that absolute zero cannot be reached using only thermodynamic means. A system at absolute zero still possesses quantum mechanical zero-point energy, the energy of its ground state. The kinetic energy of the ground state cannot be removed. However, in the classical interpretation, it is zero and the thermal energy of matter vanishes.