It has properties of both.
converted into thermal energy.
Light is considered to exhibit both wave-like and particle-like behavior, depending on the experiment being performed. This is known as the wave-particle duality of light. In some experiments, light behaves more like a wave, while in others, it behaves more like a particle (photon).
Light behaves as both a particle and a wave. This is known as the wave-particle duality of light. It exhibits wave-like properties such as interference and diffraction, as well as particle-like properties such as momentum and energy quantization.
Light exhibits both wave-like and particle-like properties. Depending on the experiment, light can behave as a wave (with properties like interference and diffraction) or as a particle (with discrete energy packets called photons). This dual nature is known as wave-particle duality.
A particle of light. Or, in general, of an electromagnetic wave.
Light behaves as both a wave and a particle in chemistry. As a wave, light exhibits properties such as interference and diffraction, while as a particle, light consists of discrete packets of energy called photons. This dual nature of light is described by the wave-particle duality principle.
It has properties of both.
converted into thermal energy.
Light is considered to exhibit both wave-like and particle-like behavior, depending on the experiment being performed. This is known as the wave-particle duality of light. In some experiments, light behaves more like a wave, while in others, it behaves more like a particle (photon).
Light behaves as both a particle and a wave. This is known as the wave-particle duality of light. It exhibits wave-like properties such as interference and diffraction, as well as particle-like properties such as momentum and energy quantization.
Light exhibits both wave-like and particle-like properties. Depending on the experiment, light can behave as a wave (with properties like interference and diffraction) or as a particle (with discrete energy packets called photons). This dual nature is known as wave-particle duality.
The wave-particle duality of light refers to its ability to exhibit both wave-like and particle-like behaviors. Light can behave as a wave, with characteristics such as interference and diffraction, as well as a particle, called a photon, with discrete energy levels and momentum. This duality is a fundamental aspect of quantum mechanics.
A particle of light. Or, in general, of an electromagnetic wave.
Light exhibits properties of both particles and waves. As a wave, it displays behaviors like interference and diffraction. As a particle, it manifests in discrete packets of energy called photons. This duality is known as the wave-particle duality of light.
Light exhibits characteristics of both a wave and a particle. Its behavior can be accurately described by wave-like properties such as interference and diffraction, as well as particle-like properties such as energy quantization and momentum. This duality is captured in the wave-particle duality of light, which is a fundamental concept in quantum physics.
Light possesses both properties of a wave and a particle. As a wave it is an oscillating electric and magnetic field. As a particle, light is a packet of energy that is treated as a point particle that does not have an electric field without a charge.
Yes, light can behave as both a particle and a wave. This duality is known as wave-particle duality, a fundamental concept in quantum mechanics. Light can exhibit wave-like behavior, such as interference and diffraction, as well as particle-like behavior, like quantized energy levels and momentum.