No, the two are entirely different concepts.
Inertia itself does not have a net force. Inertia is the tendency of an object to resist changes in its motion. When a net force acts on an object, it can overcome this inertia and cause the object to accelerate or decelerate.
Net force is the overall force acting on an object, causing it to accelerate or change its state of motion. Inertia is the resistance of an object to changes in its state of motion. The net force acting on an object is directly related to the object's inertia; the greater the net force, the greater the acceleration or change in motion, and the object's inertia will determine how easily it can be accelerated or changed.
effect on inertia of a body if force is double?
Inertia is the tendency of an object to resist changes in its motion. When a force of zero is applied to an object, its inertia will not be affected because there is no net force acting on the object to cause a change in its motion. The object will continue to move at a constant velocity or remain at rest due to its inertia.
No, the acceleration of an object is in the direction of the net force applied to it. If the net force is in the same direction as the object's motion, the acceleration will be in the same direction. If the net force is opposite to the object's motion, the acceleration will be in the opposite direction.
Inertia will not be affected when "net" or "net force" is zero.
Inertia itself does not have a net force. Inertia is the tendency of an object to resist changes in its motion. When a net force acts on an object, it can overcome this inertia and cause the object to accelerate or decelerate.
Inertia will not be affected when "net" or "net force" is zero.
Net force is the overall force acting on an object, causing it to accelerate or change its state of motion. Inertia is the resistance of an object to changes in its state of motion. The net force acting on an object is directly related to the object's inertia; the greater the net force, the greater the acceleration or change in motion, and the object's inertia will determine how easily it can be accelerated or changed.
yes, the physics of inertia apply everywhere that inertia will be
Force and inertia are not the same. They are quite different. They do both have a relationship to the motion of objects having mass.
effect on inertia of a body if force is double?
Inertia is the tendency of an object to resist changes in its motion. When a force of zero is applied to an object, its inertia will not be affected because there is no net force acting on the object to cause a change in its motion. The object will continue to move at a constant velocity or remain at rest due to its inertia.
It describes motion when net force is zero.
Balanced forces mean the net force is zero, so they are not the same unless net force is zero. Net force is the vector sum of all forces on an object
No, the acceleration of an object is in the direction of the net force applied to it. If the net force is in the same direction as the object's motion, the acceleration will be in the same direction. If the net force is opposite to the object's motion, the acceleration will be in the opposite direction.
To calculate the net force for forces in the same direction, simply add the magnitudes of the individual forces together to find the total force acting in that direction. The direction of the net force will be the same as the original forces.