no
The smallest amount of energy in a nuclear blast comes from the energy released by a single nuclear reaction or fission event. This energy is typically measured in units of electronvolts (eV) or kiloelectronvolts (keV).
The radiation in a nuclear blast comes from the release of energy during the explosion. This energy can create various types of radiation, such as gamma rays, beta particles, and neutrons. The radioactive materials involved in the blast can also contribute to the radiation released.
In a nuclear explosion, nuclear potential energy is converted into kinetic energy and thermal energy. The fission or fusion of atomic nuclei releases a massive amount of energy in the form of heat and light. This energy causes intense pressure waves and heat that result in the explosive force of the nuclear blast.
The largest percentage of energy released in a nuclear detonation comes from the fission reaction, where atomic nuclei split into smaller fragments. This process releases a tremendous amount of energy in the form of heat, light, and radiation.
The total energy released in a nuclear explosion comes from the conversion of mass into energy, as described by Einstein's equation, E=mc^2. This released energy can be in the form of blast, heat, and radiation. The magnitude of this energy release can be enormous, depending on the size and yield of the nuclear device.
Nuclear binding energy to thermal energy to blast shock wave energy.
The smallest amount of energy in a nuclear blast comes from the energy released by a single nuclear reaction or fission event. This energy is typically measured in units of electronvolts (eV) or kiloelectronvolts (keV).
blast
X-ray
Correct answer is blast effect
supersonic blast shockwave.
Blast effect
blast affect
blast
The radiation in a nuclear blast comes from the release of energy during the explosion. This energy can create various types of radiation, such as gamma rays, beta particles, and neutrons. The radioactive materials involved in the blast can also contribute to the radiation released.
Blast Effect
blast effect