Power momentum is a scalar quantity, as it is a measure of the rate at which work is done or energy is transferred. It does not have a direction associated with it, unlike vector quantities such as velocity or force.
Momentum is a vector quantity. We know that momentum is the product of mass and velocity, and velocity has direction. That makes velocity a vector quantity. And the product of a scalar quantity and a vector quantity is a vector quantity.
Momentum is a vector quantity because it has both magnitude and direction. In physics, momentum is defined as the product of an object's mass and its velocity, and its direction is always the same as the direction of the velocity of the object. As a result, momentum is treated as a vector with both magnitude (the amount of momentum) and direction.
False. Momentum is a vector quantity because it has both magnitude and direction.
The units are KgMs- why? Velocity is a vector Quantity and mass is a scalar quantity.
Momentum is a vector, the product of a scalar (mass) & a vector (velocity). As such, its direction is whatever direction the velocity vector has.
Momentum is a vector quantity because the definition of momentum is that it is an object's mass multiplied by velocity. Velocity is a vector quantity that has direction and the mass is scalar. When you multiply a vector by a scalar, it will result in a vector quantity.
Momentum is a vector quantity. We know that momentum is the product of mass and velocity, and velocity has direction. That makes velocity a vector quantity. And the product of a scalar quantity and a vector quantity is a vector quantity.
vector
Momentum is a vector quantity because it has both magnitude and direction. In physics, momentum is defined as the product of an object's mass and its velocity, and its direction is always the same as the direction of the velocity of the object. As a result, momentum is treated as a vector with both magnitude (the amount of momentum) and direction.
It's the mass of a object on its velocity (the velocity is a vector and as result of multiplication of a scalar (mass) on a vector (velocity) you get a vector (momentum). Intuitively, momentum is the property of a body which enables it to resist a force.
False. Momentum is a vector quantity because it has both magnitude and direction.
The units are KgMs- why? Velocity is a vector Quantity and mass is a scalar quantity.
Momentum is a vector, the product of a scalar (mass) & a vector (velocity). As such, its direction is whatever direction the velocity vector has.
Power can be scalar or vector, e.g d/dt torque = vector power; d/dt mcV = mcA a vector power.
A vector quantity is one which transforms like the coordinates. In other words, if a coordinate system is transformed by an operator , any vector quantity in the old coordinate system can be transformed to its equivalent in the new system by the same operator. An example of a vector quantity is displacement (r). If displacement is a vector, the rate of change of displacement (dr/dt) or the velocity is also a vector. The mass of an object (M) is a scalar quantity. Multiplying a vector by a scalar yields a vector. So momentum, which is the mass multiplied by velocity, is also a vector. Momentum too transforms like the coordinates, much like any other vector. The definition of a vector as a quantity having "magnitude and direction" is simply wrong. For example, electric current has "magnitude and direction", but is a scalar and not a vector.
Angular momentum is a vector quantity. Angular velocity, which is a vector quantity, is multiplied by inertia, which is a scalar quantity.
Yes, momentum is a vector quantity because it has both magnitude and direction. It is defined as the product of an object's mass and its velocity, and the direction of momentum is the same as the direction of the object's velocity.