The resultant of two vectors cannot be a scalar quantity.
No, displacement is a vector quantity that measures the change in position of an object from its initial point to its final point, while resultant is a vector that represents the sum or combination of all individual vectors acting on an object.
A resultant on a vector diagram is drawn by connecting the tail of the first vector to the head of the second vector. Then, the resultant vector is drawn from the tail of the first vector to the head of the second vector. The resultant vector represents the sum or difference of the two original vectors.
A resutant vector
To add vectors tip to tail to find the resultant vector, place the tail of the second vector at the tip of the first vector. The resultant vector is the vector that starts at the tail of the first vector and ends at the tip of the second vector.
adding two or more vectors
The Resultant Vector minus the other vector
No, displacement is a vector quantity that measures the change in position of an object from its initial point to its final point, while resultant is a vector that represents the sum or combination of all individual vectors acting on an object.
A resultant on a vector diagram is drawn by connecting the tail of the first vector to the head of the second vector. Then, the resultant vector is drawn from the tail of the first vector to the head of the second vector. The resultant vector represents the sum or difference of the two original vectors.
The resultant vector is the vector that 'results' from adding two or more vectors together. This vector will create some angle with the x -axis and this is the angle of the resultant vector.
the difference between resultant vector and resolution of vector is that the addition of two or more vectors can be represented by a single vector which is termed as a resultant vector. And the decomposition of a vector into its components is called resolution of vectors.
by method of finding resultant
A resutant vector
Equilibrant vector is the opposite of resultant vector, they act in opposite directions to balance each other.
If the scalar is > 1 the resultant vector will be larger and in the same direction. = 1 the resultant vector will be the same as the original vector. between 0 and 1 the resultant vector will be smaller and in the same direction. = 0 the resultant vector will be null. If the scalar is less than 0, then the pattern will be the same as above except that the direction of the resultant will be reversed.
To add vectors tip to tail to find the resultant vector, place the tail of the second vector at the tip of the first vector. The resultant vector is the vector that starts at the tail of the first vector and ends at the tip of the second vector.
A resultant vector is one vector which can replace all the other vectors and produce the same effect.
adding two or more vectors