answersLogoWhite

0

The coefficient of friction is the same in this case.

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Physics

Why coefficient of static friction is larger than kinetic friction?

The coefficient of static friction is typically larger than the coefficient of kinetic friction because it represents the maximum force required to start an object in motion, overcoming the initial static friction. Once the object is in motion, the kinetic friction is usually less because the surfaces are already moving relative to each other, resulting in lower resistance.


Does friction depend on the area in contact?

Friction does not directly depend on the area in contact. It primarily depends on the nature of the materials in contact and the force pressing them together. While a larger contact area may provide more opportunities for friction to occur, it does not significantly affect the coefficient of friction between the surfaces.


Is friction affected by the amount of surface that is touching?

No: this is a common misconception Friction= Normal force* Coefficient of friction where Normal force= Mass* Acceleration due to gravity* Cos(angle of surface) and the coefficient of friction is an intrinsic property of the surface Therefore, only the mass of the object and the surface composition affect friction


The the value of the coefficient of friction the greater the resistance to sliding?

The larger the value of μ (aka Mu, the coefficient of friction, the greater the frictional force on an object. For instance, steel on nonlubricated steel has a μ of 0.58 while steel on lubricated steel has a μ of 0.06.


What is damping coefficient of a pendulum?

The damping coefficient of a pendulum is a measure of how quickly the pendulum's oscillations dissipate over time due to external influences like air resistance or friction. A larger damping coefficient means the pendulum's motion will decay more rapidly, while a smaller damping coefficient means the motion will persist longer. The damping coefficient is typically denoted by the symbol "b" in the equation of motion for a damped harmonic oscillator.

Related Questions

How does the coefficient of static friction for two surfaces in contact compare to the coefficient of kinetic friction for the same two surfaces?

The coefficient of static friction is always larger because it takes more initial force to move an object that is at rest.


Why coefficient of static friction is larger than kinetic friction?

The coefficient of static friction is typically larger than the coefficient of kinetic friction because it represents the maximum force required to start an object in motion, overcoming the initial static friction. Once the object is in motion, the kinetic friction is usually less because the surfaces are already moving relative to each other, resulting in lower resistance.


Does friction depend on the area in contact?

Friction does not directly depend on the area in contact. It primarily depends on the nature of the materials in contact and the force pressing them together. While a larger contact area may provide more opportunities for friction to occur, it does not significantly affect the coefficient of friction between the surfaces.


Is friction affected by the amount of surface that is touching?

No: this is a common misconception Friction= Normal force* Coefficient of friction where Normal force= Mass* Acceleration due to gravity* Cos(angle of surface) and the coefficient of friction is an intrinsic property of the surface Therefore, only the mass of the object and the surface composition affect friction


The the value of the coefficient of friction the greater the resistance to sliding?

The larger the value of μ (aka Mu, the coefficient of friction, the greater the frictional force on an object. For instance, steel on nonlubricated steel has a μ of 0.58 while steel on lubricated steel has a μ of 0.06.


What is damping coefficient of a pendulum?

The damping coefficient of a pendulum is a measure of how quickly the pendulum's oscillations dissipate over time due to external influences like air resistance or friction. A larger damping coefficient means the pendulum's motion will decay more rapidly, while a smaller damping coefficient means the motion will persist longer. The damping coefficient is typically denoted by the symbol "b" in the equation of motion for a damped harmonic oscillator.


What observations indicate the size of the coefficient of static friction?

A larger coefficient of static friction can be inferred when it is more difficult to initiate motion between two surfaces in contact. This is indicated by increased resistance when trying to move the surfaces relative to each other. Additionally, larger coefficients often result in higher maximum possible forces of static friction before motion occurs.


The higher the value of the coefficient of friction the what resistance to sliding?

The larger the value of μ (aka Mu, the coefficient of friction, the greater the frictional force on an object. For instance, steel on nonlubricated steel has a μ of 0.58 while steel on lubricated steel has a μ of 0.06.


The higher the value of coefficient of friction the what is Resistance to sliding?

The larger the value of μ (aka Mu, the coefficient of friction, the greater the frictional force on an object. For instance, steel on nonlubricated steel has a μ of 0.58 while steel on lubricated steel has a μ of 0.06.


What happened to the coefficients of friction as the surface area of the contact increased?

As the coefficient of friction is not function of the area or not related to the area of the contact surface so the coefficient of friction remains constant on the increase of the contact area. The coefficient of friction depends upon the material of the friction surfaces only.


The higher the value of the coefficient of friction the resistance to sliding is what?

The larger the value of μ (aka Mu, the coefficient of friction, the greater the frictional force on an object. For instance, steel on nonlubricated steel has a μ of 0.58 while steel on lubricated steel has a μ of 0.06.


Would a smaller toy car go faster then a larger one down a ramp?

yes because it is smaller and friction will be smaller so it will go faster!