The cross product is a vector. It results in a new vector that is perpendicular to the two original vectors being multiplied.
The product of scalar and vector quantity is scalar.
Vector quantities can be added and subtracted using vector addition, but they cannot be divided like scalar quantities. However, vectors can be multiplied in two ways: by scalar multiplication, where a scalar quantity is multiplied by the vector to change its magnitude, or by vector multiplication, which includes dot product and cross product operations that result in a scalar or vector output.
Scalar product (or dot product) is the product of the magnitudes of two vectors and the cosine of the angle between them. It results in a scalar quantity. Vector product (or cross product) is the product of the magnitudes of two vectors and the sine of the angle between them, which results in a vector perpendicular to the plane containing the two original vectors.
The scalar product (dot product) of two vectors results in a scalar quantity, representing the magnitude of the projection of one vector onto the other. The vector product (cross product) of two vectors results in a vector quantity that is perpendicular to the plane formed by the two input vectors, with a magnitude equal to the area of the parallelogram they span.
No, the determinant and the cross product are not the same. The determinant is a scalar value that represents the volume scaling factor of a matrix, while the cross product is a vector operation that results in a new vector perpendicular to the original vectors.
The product of scalar and vector quantity is scalar.
It depends on the type of product used. A dot or scalar product of two vectors will result in a scalar. A cross or vector product of two vectors will result in a vector.
Vector quantities can be added and subtracted using vector addition, but they cannot be divided like scalar quantities. However, vectors can be multiplied in two ways: by scalar multiplication, where a scalar quantity is multiplied by the vector to change its magnitude, or by vector multiplication, which includes dot product and cross product operations that result in a scalar or vector output.
Scalar product (or dot product) is the product of the magnitudes of two vectors and the cosine of the angle between them. It results in a scalar quantity. Vector product (or cross product) is the product of the magnitudes of two vectors and the sine of the angle between them, which results in a vector perpendicular to the plane containing the two original vectors.
A dot product is a scalar product so it is a single number with only one component. A cross product or vector product is a vector which has three components like the original vectors.
The scalar product (dot product) of two vectors results in a scalar quantity, representing the magnitude of the projection of one vector onto the other. The vector product (cross product) of two vectors results in a vector quantity that is perpendicular to the plane formed by the two input vectors, with a magnitude equal to the area of the parallelogram they span.
No, the determinant and the cross product are not the same. The determinant is a scalar value that represents the volume scaling factor of a matrix, while the cross product is a vector operation that results in a new vector perpendicular to the original vectors.
Because there are two different ways of computing the product of two vectors, one of which yields a scalar quantity while the other yields a vector quantity.This isn't a "sometimes" thing: the dot product of two vectors is always scalar, while the cross product of two vectors is always a vector.
No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.
The product of a vector and a scalar is a new vector whose magnitude is the product of the magnitude of the original vector and the scalar, and whose direction remains the same as the original vector if the scalar is positive or in the opposite direction if the scalar is negative.
Answer: A vector is always the product of 2 scalars
Torque is got by the cross product of two vectors namely force vector and perpendicular radius vector Tau (torque) = r X F But work is got by the scalar product of force vector and displacement vector Hence W = F . S