Yes, suppose a body is rotating anti-clockwise, then its angular velocity and angular momentum, at any moment are along axis of rotation in upward direction. And when body is rotating clockwise, its angular velocity and angular momentum are along axis of rotation in downward direction. This is regardless of the fact whether angular velocity of the body is increasing or decreasing.
Angular momentum is a vector quantity. Angular velocity, which is a vector quantity, is multiplied by inertia, which is a scalar quantity.
Angular momentum in a rotating system is calculated by multiplying the moment of inertia of the object by its angular velocity. The formula for angular momentum is L I, where L is the angular momentum, I is the moment of inertia, and is the angular velocity.
Angular velocity is a measure of how fast an object is rotating around a specific axis, usually measured in radians per second. Angular momentum, on the other hand, is a measure of how difficult it is to stop an object's rotation, calculated as the product of angular velocity and moment of inertia. In simple terms, angular velocity is the speed of rotation, while angular momentum is the rotational equivalent of linear momentum.
To calculate angular momentum, you need the object's moment of inertia, its angular velocity, and the axis of rotation. The formula for angular momentum is given by L = I * ω, where L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
To determine the angular momentum of a rotating object, you multiply the object's moment of inertia by its angular velocity. The moment of inertia is a measure of how mass is distributed around the axis of rotation, and the angular velocity is the rate at which the object is rotating. The formula for angular momentum is L I, where L is the angular momentum, I is the moment of inertia, and is the angular velocity.
Angular momentum is a vector quantity. Angular velocity, which is a vector quantity, is multiplied by inertia, which is a scalar quantity.
Angular momentum in a rotating system is calculated by multiplying the moment of inertia of the object by its angular velocity. The formula for angular momentum is L I, where L is the angular momentum, I is the moment of inertia, and is the angular velocity.
Angular velocity is a measure of how fast an object is rotating around a specific axis, usually measured in radians per second. Angular momentum, on the other hand, is a measure of how difficult it is to stop an object's rotation, calculated as the product of angular velocity and moment of inertia. In simple terms, angular velocity is the speed of rotation, while angular momentum is the rotational equivalent of linear momentum.
By finding the direction of angular velocity because it's always parallel to it.
To calculate angular momentum, you need the object's moment of inertia, its angular velocity, and the axis of rotation. The formula for angular momentum is given by L = I * ω, where L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
To determine the angular momentum of a rotating object, you multiply the object's moment of inertia by its angular velocity. The moment of inertia is a measure of how mass is distributed around the axis of rotation, and the angular velocity is the rate at which the object is rotating. The formula for angular momentum is L I, where L is the angular momentum, I is the moment of inertia, and is the angular velocity.
Angular velocity means how fast something rotates. The exact definition of angular momentum is a bit more complicated, but it is the rotational equivalent of linear momentum. It is the product of moment of inertia and angular speed.
Angular momentum is a measure of an object's rotational motion, determined by the mass of the object, its angular velocity (rate of rotation), and the distribution of mass around its axis of rotation. It is a vector quantity, with both magnitude and direction, and is conserved in the absence of external torques.
momentum is product of moment of inertia and angular velocity. There is always a 90 degree phase difference between velocity and acceleration vector in circular motion therefore angular momentum and acceleration can never be parallel
Angular momentum about the axis of rotation is the moment of linear momentum about the axis. Linear momentum is mv ie product of mass and linear velocity. To get the moment of momentum we multiply mv by r, r the radius vector ie the distance right from the point to the momentum vector. So angular momentum = mv x r But we know v = rw, so angular momentum L = mr2 x w (w-angular velocity) mr2 is nothing but the moment of inertia of the moving body about the axis of rotation. Hence L = I w.
Take the velocity to be in positive direction. Positive acceleration increases velocity and they are in the same direction. Negative acceleration reduce velocity and they are in opposite direction. It does not matter if the motion in linear or anfular.
The direction of angular velocity is perpendicular to the plane in which the rotation is occurring. It follows the right-hand rule, with the thumb pointing in the direction of the axis of rotation and the fingers curling in the direction of the angular velocity.