The mass of an object is the same wherever it may be. The weight of an object changes however. The weight of an object is the product of its mass times gravity. Gravity is greater on earth than it is on the moon, so an object will weigh more on earth.
If a satellite somehow acquires too much velocity for the orbit it's in, it moves to an orbit for which that velocity is just right. That's how artificial satellites are placed into the desired orbit ... engines are fired to give them the velocity that's correct for the desired orbit, and that's where they go.
Escape velocity is the minimum velocity needed for an object to break free from the gravitational pull of a celestial body, such as a planet or moon. It allows an object to overcome gravity and travel into space without being pulled back. The specific escape velocity depends on the mass and radius of the celestial body.
The moon's velocity affects its orbit around the Earth. The moon's velocity must be balanced with the gravitational pull of the Earth to maintain its orbit. If the velocity is too slow, the moon may fall towards the Earth; if it is too fast, the moon may move away from the Earth.
The moon's average velocity around Earth is about 2,288 miles per hour.
The velocity of the moon as it orbits the Earth is approximately 1 kilometer per second.
Yes. Probes have already be sent to the Moon, and other planets; this requires a velocity very near the escape velocity from Earth. Other probes are leaving the Solar System, so they achieved the much higher escape velocity required to escape the attraction from the Sun.
The moon's escape velocity is lower than the average velocity of gas particles in its atmosphere, so the moon cannot retain an atmosphere as the gas particles would escape into space. This is why the moon has no significant atmosphere.
The lunar escape velocity, regardless of what object is trying to escape, is about 2.38 km/s, or about 1.5 mi/s. (This is about 5324 mph, compared to about 25,000 mph on Earth.)
Yes, several manned vehicles have reached escape velocity, which is about 25,000 miles per hour. The Apollo spacecraft used during the moon missions reached escape velocity en route to the moon. Also, the Space Shuttle reached escape velocity when it orbited the Earth or traveled to the International Space Station.
The escape velocity is given by √2gR Hence it's value Ve on the earth and Vm on the moon is Ve = √2ge.Re Vm = √2gm.Rm Therefore , their ratio = Ve/Vm = √ge.Re/√gm.Rm = √6 x 10 = √60 = 8 nearly
Escape velocity is given by. √2gR or √2GM/R .therefore escape velocity is directly prop. to gravity of a planet or star or any other body. More is the gravity more is the escape velocity. The escape velocity of our earth is 11.2 km/s and that of moon is 2.31 km/s
Escape velocity for the moon is a little over 5000 miles per hour. For the earth it is about 25,000 miles per hour. So the moon requires a fifth of the energy required to escape the earth.
If a satellite somehow acquires too much velocity for the orbit it's in, it moves to an orbit for which that velocity is just right. That's how artificial satellites are placed into the desired orbit ... engines are fired to give them the velocity that's correct for the desired orbit, and that's where they go.
Escape velocity is the minimum velocity needed for an object to break free from the gravitational pull of a celestial body, such as a planet or moon. It allows an object to overcome gravity and travel into space without being pulled back. The specific escape velocity depends on the mass and radius of the celestial body.
If you mean to escape into space, that is called the "escape velocity". How much this is depends on whether you are talking about planet Earth, the Moon, the Sun, Jupiter, Sirius B, etc.
The moon's velocity affects its orbit around the Earth. The moon's velocity must be balanced with the gravitational pull of the Earth to maintain its orbit. If the velocity is too slow, the moon may fall towards the Earth; if it is too fast, the moon may move away from the Earth.
The moon's average velocity around Earth is about 2,288 miles per hour.