answersLogoWhite

0

Yes, there is a buoyant force acting on you when you are submerged in a fluid. However, whether you float or sink depends on the relationship between the buoyant force and your weight. If the buoyant force is greater than your weight, you will float; if it is less, you will sink.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Related Questions

How does the sphere's buoyant force relate to its weight when it floats?

When a sphere floats, its weight is equal to the buoyant force acting on it. This is because the sphere reaches an equilibrium where the upward buoyant force from the fluid equals the downward force of gravity acting on the sphere.


What is the relationship between buoyant force and the volume of water displaced?

The buoyant force acting on an object submerged in water is equal to the weight of the water displaced by the object. The volume of water displaced is directly proportional to the buoyant force, meaning that the greater the volume of water displaced, the greater the buoyant force acting on the object.


Which diagrams correctly displays the relationship between the weight of an object and the buoyant force?

Although we cannot SEE the diagrams here, the buoyant force should be acting directly opposite of the weight.W.X.Y.Z.Answer: W.


What determine the buoyant force acting on an object?

The buoyant force acting on an object is determined by the volume of the object submerged in a fluid and the density of the fluid. This force is equal to the weight of the fluid displaced by the object.


What is the bouyant force acting on a 10-ton ship floating in the ocean?

The buoyant force acting on the ship is equal to the weight of the water displaced by the ship. Since the ship is floating, the buoyant force is equal to the weight of the ship. In this case, the buoyant force is 10 tons.


What is the buoyant force acting on you?

The buoyant force acting on you is equal to the weight of the fluid displaced by your body. It is the force that allows objects to float in a liquid or gas, and it is determined by the volume of the object submerged and the density of the fluid.


How does Archimede's principle relate to the buoyant force acting on an object to the fluid displaced by the object?

It says that the buoyant force acting on the object is equalto the weight of the fluid displaced by the object.


How can a submarine float and which force is acting on it?

The buoyant force keeps a submarine afloat.


Is there a buoyant force acting on you at this minute?

Yes, there is a buoyant force acting on you at all times, even when you are not in water. This force is due to the displacement of air by your body, which creates a buoyant force that is usually negligible compared to when you are in water.


Which of the object has the greater buoyant force acting on it?

The object with greater volume displaces more fluid, resulting in a greater buoyant force acting on it. This is known as Archimedes' principle. Additionally, the density of the fluid and the object also play a role in determining the buoyant force.


How does the weight of a floating object compared with the buoyant force acting on the object?

The weight of a floating object and the buoyant force on it must be equal. If they were not equal, then there would be a net vertical force on the object, and it would be accelerating up or down.


What determines an objects buoyant force?

An object's buoyant force is determined by the volume of fluid it displaces and the density of the fluid. If the object's weight is less than the buoyant force acting on it, the object will float; if greater, it will sink. Archimedes' principle states that the buoyant force acting on an object is equal to the weight of the fluid displaced by the object.