Sorry it is impossible to understand your question.
The force F can be determined by balancing the forces acting on the box along the incline. The force of gravity acting downward is mgsin(θ) where θ is the angle of the incline. The force F compensates for this to keep the box moving at a constant speed, so F = mgsin(θ). Plug in the values to find F.
If the horizontal velocity is constant, then the horizontal acceleration is zero,and the net horizontal force is zero.But if you are saying that the body was in constant motion and after that the force was applied, then the body will acccelerate because of the force. The net force applied on the body would be equal to the force applied to it when the body was in constant motion as here the force is in direction of the motion and hence the angle will be 0 giving the value of cos 0º as 1. Hence there would be no reduction in the net force
When a force moves objects over a rough horizontal surface at a constant velocity, the work done against friction must be equal to the work done by the applied force to maintain the constant velocity. This is because the force of friction opposes the motion of the object, so the work done by the applied force must overcome the work done by friction to keep the object moving at a constant speed.
The horizontal force can be calculated using the formula Fhorizontal = Fcos(θ), where F is the given force (20N) and θ is the angle of inclination (30 degrees). Plugging in the values, we get Fhorizontal = 20N x cos(30) ≈ 17.3N.
In projectile motion, since , there's no force in the horizontal direction which can change the horizontal motion therefore the horizotal velocity remains conserved Vx=Vox= Vocos theta by using above formula , constant horizontal initial or final velocity can be found. since Initial = final horizontal velocity.
No force is acting on it. Constant velocity means no acceleration, which means no force, from f=ma, no 'a' no force.
The force F can be determined by balancing the forces acting on the box along the incline. The force of gravity acting downward is mgsin(θ) where θ is the angle of the incline. The force F compensates for this to keep the box moving at a constant speed, so F = mgsin(θ). Plug in the values to find F.
If the car and driver are moving (along a flat horizontal surface) at constant speed, then there is no acceleration, and the net horizontal force is zero.The applied 3,000N must be canceled by an effective total 3,000N of friction.
Since the object is moving at a constant speed, the net force on it must be zero.If I'm applying a constant horizontal force, then the frictional force must be equal to my force = 600N and in the opposite direction to my force.
If the object is moving along a horizontal surface with a constant acceleration,then the net vertical force on it is zero, and the net horizontal force on it is(the pushing force) minus (any kinetic friction force where it rubs the surface).The numerical value of that net force is(the acceleration) times (the object's mass).
If the horizontal velocity is constant, then the horizontal acceleration is zero,and the net horizontal force is zero.But if you are saying that the body was in constant motion and after that the force was applied, then the body will acccelerate because of the force. The net force applied on the body would be equal to the force applied to it when the body was in constant motion as here the force is in direction of the motion and hence the angle will be 0 giving the value of cos 0º as 1. Hence there would be no reduction in the net force
It wouldn't accelerate. It would move at a constant velocity due to its tendency to keep moving (inertia) and friction being canceled out by the horizontal force.
The applied force will depend on the required force, and the angle to the ramp (or the horizontal) at which the force is applied.
When a force moves objects over a rough horizontal surface at a constant velocity, the work done against friction must be equal to the work done by the applied force to maintain the constant velocity. This is because the force of friction opposes the motion of the object, so the work done by the applied force must overcome the work done by friction to keep the object moving at a constant speed.
The horizontal force can be calculated using the formula Fhorizontal = Fcos(θ), where F is the given force (20N) and θ is the angle of inclination (30 degrees). Plugging in the values, we get Fhorizontal = 20N x cos(30) ≈ 17.3N.
In projectile motion, since , there's no force in the horizontal direction which can change the horizontal motion therefore the horizotal velocity remains conserved Vx=Vox= Vocos theta by using above formula , constant horizontal initial or final velocity can be found. since Initial = final horizontal velocity.
A ball rolled along a horizontal surface maintains a constant speed because there is no external force acting on it to change its velocity. The absence of friction and air resistance allows the ball to continue moving at a steady pace.