Yes. Gravity drops off at the square of the distance. So the further you are from something the less the force of gravity you experience.
Yes, the measurement of your weight certainly depends on gravity as weight is mass multiplied by gravity, w=mg. Therefore, on the moon you would weigh less as your mass would stay the same but the gravitational field strength is less. The affect of gravity on height is not so obvious, although a stronger gravitational pull would cause the spine to contract, altering a persons height by mere millimetres.
The higher the ball is dropped from, the higher it will bounce back. This is due to potential energy converting to kinetic energy upon impact with the ground, propelling the ball higher when dropped from greater heights. Ultimately, the bounce height depends on factors like gravity, air resistance, and the material of the ball.
The height reached by a ball thrown upward depends on its initial speed: the higher the initial speed, the higher the maximum height reached. This is because a greater initial speed gives the ball more kinetic energy, allowing it to overcome gravity and reach a higher position before gravity brings it back down.
The gravitational potential energy increases when the center of gravity of an object is raised, as the object has been lifted against gravity. The potential energy is directly proportional to the height of the center of gravity above a reference point, such as the ground.
No, lifting the bag of sugar to a higher shelf does not get easier as you go higher. In fact, the work required to lift the bag against gravity remains the same regardless of the height you are lifting it to. The force needed to overcome gravity is constant, so the effort required doesn't change with the shelf height.
The farther it is from Earth, the less gravity will there be. Gravity will never completely disappear.
The higher the center of gravity the easier it is to roll over.
Specific gravity affects head pressure in a pump system by changing the weight of the fluid being pumped. A higher specific gravity means the fluid is denser and heavier, resulting in higher head pressure needed to overcome the increased resistance of the fluid. Conversely, a lower specific gravity would require less head pressure.
Yes, the measurement of your weight certainly depends on gravity as weight is mass multiplied by gravity, w=mg. Therefore, on the moon you would weigh less as your mass would stay the same but the gravitational field strength is less. The affect of gravity on height is not so obvious, although a stronger gravitational pull would cause the spine to contract, altering a persons height by mere millimetres.
You can jump higher on moon,because there's less gravity.
The higher the ball is dropped from, the higher it will bounce back. This is due to potential energy converting to kinetic energy upon impact with the ground, propelling the ball higher when dropped from greater heights. Ultimately, the bounce height depends on factors like gravity, air resistance, and the material of the ball.
It is true that there is a change in weight the further you go from earth, but comparatively weight at sea level and Mt.Everest is insignificant since the radius of the earth is about 700 times greater than the height of Mt.Everest, therefore the weight would be insignificantly smaller.
246... of what? To calculate the potential energy, multiply mass x gravity x height. In SI units, use kg for mass, 9.8 for gravity, meters for height. Answer will be in Joule.If the height is in meters, the acceleration of gravity is much, much less. So you'll have to calculate the acceleration yourself by g = G × Mearth/246,000,0002.
The height reached by a ball thrown upward depends on its initial speed: the higher the initial speed, the higher the maximum height reached. This is because a greater initial speed gives the ball more kinetic energy, allowing it to overcome gravity and reach a higher position before gravity brings it back down.
As you get higher up in the atmosphere there is less and less air on top of your head so there is less weight, meaning there is less pressure. Gravity. Atmosphere will be more compact closer to Earth because particles in the air have mass and are thus pulled down by gravity.
Does gravity affect a person's height and why?
Your weight on a planet is determined by its gravitational pull, which affects how much force is exerted on your body. A higher weight due to stronger gravity typically means that you will jump lower because it requires more force to overcome that gravitational pull. Conversely, on a planet with weaker gravity, you would weigh less and could jump higher since less force is needed to lift your body off the ground. Therefore, there is an inverse relationship between your weight and your jump height relative to the gravitational strength of the planet.