The product is an isotope of Silicon,
15P30 ----> 14Si30 + e+
Work backwards. Positron emission means (essentially) a proton decayed into a neutron/positron pair. The mass number remains the same, but the atomic number goes down one to Bromine. Krypton has an isotope that fits this bill.
For decays by alpha emission use the general formula: A/Z X --> 4/2 He + A-4/Z-2 Y *Where A is atomic mass and Z is atomic number. So for U-238 238/92 U --> 4/2 He + 234/90 Th
The atomic nucleus can emit beta particles (beta radiation). A neutron emits a beta particle when it decays into a proton, and anti-neutrino, and an electron (which becomes the beta particle).
Beta decay changes the composition of a nucleus by transforming a neutron into a proton, accompanied by the emission of a beta particle (electron or positron) and an antineutrino or neutrino. This process increases the atomic number of the nucleus while keeping the mass number constant, leading to the formation of a different element.
Gamma emission is a type of decay in which a nucleus releases high-energy gamma photons without changing its atomic number or mass number. This is different from alpha and beta decay, which involve the emission of particles from the nucleus. Gamma emission is a form of electromagnetic radiation, while alpha and beta decays involve the emission of particles with mass.
Work backwards. Positron emission means (essentially) a proton decayed into a neutron/positron pair. The mass number remains the same, but the atomic number goes down one to Bromine. Krypton has an isotope that fits this bill.
Many particles can be emitted from radioactive decay. We have Internal Conversion in which a nucleus transfers the energy to an electron which then releases it. There is also Isometric Transition which is basically the gamma ray (photon). There is the decay in which a nucleon is emitted. In this scenario we can have an alpha decay (in which an alpha particle decays), a proton emission, a neutron emission, double proton emission (two protons are emitted), spontaneous fission (the nucleus brakes down into two smaller nuclei and/or other particles) and we have the cluster decay (where the nucleus emits a smaller nucleus). There is the beta decay too. There is the Beta decay (electron and electron antineutrino are emitted), positron emission (a positron and an electron neutrino are emitted), electron capture (an electron is captured by the nucleus and a neutrino is emitted), bound state beta decay (the nucleus decays to an electron and an antineutrino but here the electron is not emitted since it is captured into a K-shell), double beta decay (two electrons and two antineutrinos are emitted), double electron capture (the nucleus absorbs two electrons and emits two neutrinos), electron capture with positron emission (an electron is absorbed and a positron is emitted along with two neutrinos), and double positron emission (in which the nucleus emits two positrons and two neutrons).
Gold never decays by alpha emission, it either decays by -beta, +beta, K capture, or gamma emission depending on isotope.Natural gold is isotopically pure gold-197, which is stable.
An isotope can be produced if a nucleus gains a neutron or if one of the protons in its nucleus decays into a neutron and positron.
Argon-40 Naturally occurring K-40 with a half-life of 1.25×109 years, decays to stable Ar-40 (11.2%) by electron capture or positron emission.
The nucleus of the atom decays, and in the process, the nucleus transforms into another element, or into an isotope or isomer of the same element. In radioactive decay, the nucleus always emits some kind of particle(s). It is the high-energy emission of these particles that we call radiation. There are many different types of radioactive decay:Alpha decay results in the emission of an alpha particle (two neutrons and two protons)Beta decay results in the emission of a beta particle (an electron or a positron)Neutron decay results in the emission of a neutronProton decay results in the emission of a protonGamma decay results in the emission of a gamma particle (a photon)Neutrino decay results in the emission of a neutrino or antineutrinoIn some cases, a combination of the above emissions takes place. For example in double beta decay, a single nucleus emits two electrons and two antineutrinos in the same event.
An isotope can be produced if a nucleus gains a neutron or if one of the protons in its nucleus decays into a neutron and positron.
Caesium-137 as it decays by beta emission.
Alpha decay is the emission of an alpha particle, which consists of two protons and two neutrons. During alpha decay, the parent nucleus loses an alpha particle to become a different nucleus called the daughter product. The daughter product formed after alpha decay will have an atomic number that is two less and a mass number that is four less than the parent nucleus.
Yttrium-90 "the slash is important"
Tritium (3H) decays into 3He via beta decay.
Radon is the only naturally occurring radioactive inert gas. Its most stable isotope, radon-222, decays through alpha particle emission. It is produced as a decay product of uranium and thorium in the Earth's crust.