answersLogoWhite

0

If you define sheer forces acting on an object as the reason for you question then the answer depends on the direction and strength of the sheer forces to be diagrammed

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between resolved shear stress and critical resolved shear stress in materials science?

In materials science, the relationship between resolved shear stress and critical resolved shear stress is that the critical resolved shear stress is the minimum amount of shear stress needed to cause dislocation movement in a material. Resolved shear stress is the component of an applied stress that acts in the direction of dislocation movement. When the resolved shear stress exceeds the critical resolved shear stress, dislocations can move and deformation occurs in the material.


How do you calculate the shear modulus of a material?

The shear modulus of a material is calculated by dividing the shear stress by the shear strain. This can be represented by the equation: Shear Modulus Shear Stress / Shear Strain.


What is the relationship between shear stress and shear rate in fluid mechanics?

In fluid mechanics, shear stress is the force per unit area applied parallel to the surface of a fluid, while shear rate is the rate at which adjacent layers of fluid move past each other. The relationship between shear stress and shear rate is described by Newton's law of viscosity, which states that shear stress is directly proportional to shear rate. This means that as the shear rate increases, the shear stress also increases proportionally.


Definition of hooke's law in shear?

Hooke's Law in shear states that the shear stress in a material is directly proportional to the shear strain applied, as long as the material remains within its elastic limit. This relationship is expressed mathematically as τ = Gγ, where τ is the shear stress, G is the shear modulus, and γ is the shear strain.


What is the relationship between normal stress and shear stress in a material under mechanical loading?

Normal stress and shear stress are two types of stresses that act on a material under mechanical loading. Normal stress is a force applied perpendicular to the surface of the material, while shear stress is a force applied parallel to the surface. The relationship between normal stress and shear stress depends on the material's properties and the direction of the applied forces. In general, normal stress and shear stress can interact and affect each other, leading to complex mechanical behaviors in the material.

Related Questions

What is the relationship between resolved shear stress and critical resolved shear stress in materials science?

In materials science, the relationship between resolved shear stress and critical resolved shear stress is that the critical resolved shear stress is the minimum amount of shear stress needed to cause dislocation movement in a material. Resolved shear stress is the component of an applied stress that acts in the direction of dislocation movement. When the resolved shear stress exceeds the critical resolved shear stress, dislocations can move and deformation occurs in the material.


Relationship between the shear stress and angle of shear?

Shear Stress divided by the Angle of Shear is equals to Shear Stress divided by Shear Strain which is also equals to a constant value known as the Shear Modulus. Shear Modulus is determined by the material of the object.


How do you calculate the shear modulus of a material?

The shear modulus of a material is calculated by dividing the shear stress by the shear strain. This can be represented by the equation: Shear Modulus Shear Stress / Shear Strain.


What is the ratio of average shear stress to maximum shear stress for a circular section?

the average shear stress is 3/4 the maximum shear stress for a circular section


Define direct shear stress?

Shear force is a load (pounds, or newtons) in plane of the object which produces shear stress ( pounds per sq inch, or Pascals). Shear force is related to shear stress as STRESS = FORCE/AREA


What is the relationship between shear stress and shear rate in fluid mechanics?

In fluid mechanics, shear stress is the force per unit area applied parallel to the surface of a fluid, while shear rate is the rate at which adjacent layers of fluid move past each other. The relationship between shear stress and shear rate is described by Newton's law of viscosity, which states that shear stress is directly proportional to shear rate. This means that as the shear rate increases, the shear stress also increases proportionally.


Why fluids do not sustain shear stress?

Fluids do not sustain shear stress because they undergo continuous deformation under applied shear forces. Unlike solids that have a defined shape and can resist shear stress, fluids flow and deform when subjected to shear, resulting in no sustained shear stress. This behavior is a fundamental property of fluids known as viscosity.


What are shear stresses?

The forces are equal magnitude but opposite directions act tangent the surfaces of opposite ends of the object the shear stress as force "f" acting tangent to the surface,dived by the "area"{a} shear stress=f/a


Why shear stresses are maximum at neutral axis?

according to bending stress because shear stress at neutral is 0 that is why shear force is maximum


Is bending stress and shear stress are same are not?

no


What are the difference kinds stress?

Normal stress and shear stress


Define shear stress?

Shear means a change in shape but not in size. Shear stress is defined as the force per unit area producing a change is shape.