In the first 2 seconds, the velocity of the ball would be given by v = at, where a is the acceleration. Given it traveled 2 meters in 2 seconds, we can use the equation s = (1/2)at^2 to find the acceleration which is 1 m/s^2. So, after 3 seconds, the ball will travel an additional 3 * 1 = 3 meters.
If mass increases and there is no friction, the acceleration of an object on an inclined plane would remain constant, assuming the incline angle and applied force remain the same. The acceleration is determined by the net force acting on the object, which in this case is equal to the component of the gravitational force parallel to the incline.
a body sliding down an inclined plane also moves with constant acceleration on account of gravity, but the acceleration down the plane is very much less than the acceleration of free falling body, especially if the angle made by the plane with the horizontal is small
The equation for the constant acceleration of a sphere rolling without slipping on a frictionless inclined plane is given by a = g * sin(theta) / (1 + (I / (m * r^2))), where a is the acceleration, g is the acceleration due to gravity, theta is the angle of the incline, I is the moment of inertia of the sphere, m is the mass of the sphere, and r is the radius of the sphere.
The acceleration of an object on an incline is influenced by the angle of inclination. A steeper incline will result in a greater component of the object's weight acting parallel to the incline, leading to a greater acceleration. The acceleration can be calculated using the formula a = g * sin(theta), where "a" is the acceleration, "g" is the acceleration due to gravity, and "theta" is the angle of inclination.
changing the slope of the inclined plane changes the values for velocity because of the unbalanced external force exerted on the object increases the velocity.
The acceleration due to gravity remains constant, regardless of incline. The fact that it is on an incline does not change the fact that it will remain constant, it will only change the component of that acceleration being applied to the ball.
If mass increases and there is no friction, the acceleration of an object on an inclined plane would remain constant, assuming the incline angle and applied force remain the same. The acceleration is determined by the net force acting on the object, which in this case is equal to the component of the gravitational force parallel to the incline.
a body sliding down an inclined plane also moves with constant acceleration on account of gravity, but the acceleration down the plane is very much less than the acceleration of free falling body, especially if the angle made by the plane with the horizontal is small
The equation for the constant acceleration of a sphere rolling without slipping on a frictionless inclined plane is given by a = g * sin(theta) / (1 + (I / (m * r^2))), where a is the acceleration, g is the acceleration due to gravity, theta is the angle of the incline, I is the moment of inertia of the sphere, m is the mass of the sphere, and r is the radius of the sphere.
The acceleration of an object on an incline is influenced by the angle of inclination. A steeper incline will result in a greater component of the object's weight acting parallel to the incline, leading to a greater acceleration. The acceleration can be calculated using the formula a = g * sin(theta), where "a" is the acceleration, "g" is the acceleration due to gravity, and "theta" is the angle of inclination.
If they are both solid, and the incline is the same, the rate of acceleration will be the same.
changing the slope of the inclined plane changes the values for velocity because of the unbalanced external force exerted on the object increases the velocity.
An incline represents acceleration, a straight line represents a constant speed and a decline represents slowing down.
The acceleration of a block on an inclined plane is determined by the angle of the incline and the force of gravity acting on the block. It can be calculated using the formula: acceleration (sin ) g, where is the angle of the incline and g is the acceleration due to gravity (approximately 9.81 m/s2).
The contribution of the acceleration of gravity in the direction of motion increases as the angle of the incline increases. Or in other words, as the angle between the direction of motion and the force of gravity goes to zero, the acceleration of the object goes to the gravitational acceleration. a = g cos(theta) Where theta is the angle between the direction of motion and verticle, which is in fact (theta = 90 - angle of the incline)Where a is the acceleration of the object down the incline plane and g is the acceleration due to gravity. Theta is the angle between the direction of motion of the accelerating object and the acceleration of gravity. Initially, the angle between a and g is 90 degrees (no incline) and therefore g contributes nothing to the objects acceleration. a = g cos(90) = 0 As the angle of the inclined is increased, the angle between a and g approaches zero, at which point a = g. With no other forces acting upon the object, g is its maximum acceleration.
When a lorry is moving at a constant speed, the driving force from the engine is balanced by the resistive forces such as friction with the road, air resistance, and any incline or decline on the road. These balanced forces result in no net acceleration and allow the lorry to maintain a constant speed.
The distance an object travels can be affected by factors such as the initial velocity, acceleration, air resistance, friction, and the incline of the surface it's traveling on. These factors can either increase or decrease the distance traveled by the object.