Yes, that is correct.
Acceleration is directly proportional to the force applied to an object and inversely proportional to the mass of the object. This means that increasing the force applied will increase the acceleration, while increasing the mass will decrease the acceleration for a given force.
When a net force acts on an object, the object's acceleration is directly proportional to the net force applied and inversely proportional to the object's mass. This relationship is described by Newton's second law of motion, which states that acceleration equals the net force divided by the object's mass.
Work is directly proportional to force; the amount of work done on an object is directly related to the force applied to it. More force results in more work being done.
The law that describes this relationship is Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force acting on it, and inversely proportional to the mass of the object. Mathematically, this can be expressed as F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration.
Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.
Acceleration is directly proportional to the force applied to an object and inversely proportional to the mass of the object. This means that increasing the force applied will increase the acceleration, while increasing the mass will decrease the acceleration for a given force.
Newton's second law, which states that the acceleration of a body is directly proportional to the net force and inversely proportional to its mass, a = F/m.
When a net force acts on an object, the object's acceleration is directly proportional to the net force applied and inversely proportional to the object's mass. This relationship is described by Newton's second law of motion, which states that acceleration equals the net force divided by the object's mass.
False. The acceleration of an object is directly proportional to the net force acting on it. Newton's 2nd Law: F = ma where F is the force, m is the mass, and a is the acceleration. __________________________________________________ The acceleration of a body is "inversely" proportional to its mass.
Work is directly proportional to force; the amount of work done on an object is directly related to the force applied to it. More force results in more work being done.
The law that describes this relationship is Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force acting on it, and inversely proportional to the mass of the object. Mathematically, this can be expressed as F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration.
Inversely proportional means that one variable goes up while the other goes down. Directly proportional means that both variables increase or decrease at the same time. ex: The volume of a gas at constant pressure is inversely proportional to gas pressure, thus this means that as pressure increases, the volume of the gas will decrease. ex: The volume of a fixed amount of gas is directly proportional to absolute pressure, thus this means that when you heat a gas the volume also increases.
Newton's second law of motion provides an explanation for the behavior of objects when forces are applied to the objects. The law states that external forces cause objects to accelerate, and the amount ofaccelerationis directly proportional to the net force and inversely proportional to the mass of the object.
The gravity is proportional to both masses involved, and inversely proportional to the square of the distance.The gravity is proportional to both masses involved, and inversely proportional to the square of the distance.The gravity is proportional to both masses involved, and inversely proportional to the square of the distance.The gravity is proportional to both masses involved, and inversely proportional to the square of the distance.
Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.Other things being equal, it is directly proportional to the temperature. It is also directly proportional to the amount of gas.
Objects that experience the same amount of force can accelerate at different rates due to differences in their mass. Heavier objects require more force to accelerate at the same rate as lighter objects. This is explained by Newton's second law of motion, which states that acceleration is directly proportional to force and inversely proportional to mass.
Mass doesn't like to move. Rather, it doesn't like to be forced to move. The first law of motion by Newton states that an object in motion will stay in motion until an external force is acted upon it. The second law of motion by Newton states that force is equal to mass multiplied by acceleration. The more something weighs, or the more mass it has, the more acceleration or force is required to move it. So to answer your question shortly, increase in mass affects how much acceleration or force is needed to move that mass.