Efficiency is equal to the ratio of work input to work output; for an ideal machine this ratio is equal to 1 or 100%. For a real machine this ratio is always less than 1 because some of the work input is used to overcome mechanical friction within the machine which does not contribute to the work output of the machine.
A real machine is a physical device with moving parts that may have friction and energy losses, resulting in reduced efficiency. An ideal machine is a theoretical concept that assumes no energy losses due to friction or other factors, resulting in 100% efficiency. Ideal machines are used for theoretical calculations and comparisons, while real machines consider practical limitations and inefficiencies.
Friction is a common obstacle to achieving 100% efficiency in a real machine. Friction causes energy to be lost as heat, reducing the overall efficiency of the machine. Additionally, imperfections in materials, wear and tear, and other factors can also contribute to inefficiencies.
The maximum efficiency of a machine is 100%, which means that all input energy is converted into useful output energy without any losses. However, achieving 100% efficiency is practically impossible due to factors such as friction, heat loss, and other inefficiencies in real-world systems.
input
An ideal machine has, by definition, an efficiency of exactly 100%, which means that absolutely none of the energy it consumes is wasted when converted to power (energy per unit of time), hence the name "ideal". A real machine, however, will never reach an efficiency of 100%, as there will always be at least a tiny bit of energy that is lost to the environment. This is because it is practically impossible to create a perfectly closed system in which no energy can leak out. It is possible, however, to build very efficient systems and machines, although this depends on just how well they are made. Therefore, the efficiency of a real machine is quite variable, going easily from 10% to 98%, depending on its quality. A simple example is that of ordinary household voltage transformers, which generally have efficiencies of around 80%; and of high grade power plant transformers, which have efficiencies of around 98%.
In ideal machine input is equal to output . The efficiency of ideal machine is 100% . In real machine input is not equal to output .The efficiency of ideal machine in not 100% . In ideal machine there is no lose of energy . In real machine there is lose of energy . In real machine there is no friction . While in real machine there is friction .
In an ideal frictionless system, the work input equals the output and force. Your Welcome!!!
A real machine is a physical device with moving parts that may have friction and energy losses, resulting in reduced efficiency. An ideal machine is a theoretical concept that assumes no energy losses due to friction or other factors, resulting in 100% efficiency. Ideal machines are used for theoretical calculations and comparisons, while real machines consider practical limitations and inefficiencies.
Friction is a common obstacle to achieving 100% efficiency in a real machine. Friction causes energy to be lost as heat, reducing the overall efficiency of the machine. Additionally, imperfections in materials, wear and tear, and other factors can also contribute to inefficiencies.
In ideal machine input is equal to output . The efficiency of ideal machine is 100% . In real machine input is not equal to output .The efficiency of ideal machine in not 100% . In ideal machine there is no lose of energy . In real machine there is lose of energy . In real machine there is no friction . While in real machine there is friction .
In an ideal frictionless system, the work input equals the output and force. Your Welcome!!!
A high efficiency machine will produce more of what is it that you want with the same power as the low efficiency one. In other words, for a low efficiency machine do as much as a high efficiency one, you have to give it more power (energy).
The efficiency of a machine is usually expressed as a percentage. The ideal efficiency of a machine is 100-percent.Another AnswerThere are no units of measurement for efficiency, because you are comparing like with like: output power divided by input power.
frictionIn real machines, as opposed to ideal machines, there is always friction that reduces the efficiency of the machine. Lubricants like oil can be used to reduce friction and improve efficiency.
The maximum efficiency of a machine is 100%, which means that all input energy is converted into useful output energy without any losses. However, achieving 100% efficiency is practically impossible due to factors such as friction, heat loss, and other inefficiencies in real-world systems.
input
An ideal machine has, by definition, an efficiency of exactly 100%, which means that absolutely none of the energy it consumes is wasted when converted to power (energy per unit of time), hence the name "ideal". A real machine, however, will never reach an efficiency of 100%, as there will always be at least a tiny bit of energy that is lost to the environment. This is because it is practically impossible to create a perfectly closed system in which no energy can leak out. It is possible, however, to build very efficient systems and machines, although this depends on just how well they are made. Therefore, the efficiency of a real machine is quite variable, going easily from 10% to 98%, depending on its quality. A simple example is that of ordinary household voltage transformers, which generally have efficiencies of around 80%; and of high grade power plant transformers, which have efficiencies of around 98%.