answersLogoWhite

0


Best Answer

If the net charge enclosed by a surface is zero then the field at all points on the surface is not zero because gauss's law states that if the charge enclosed by a surface is zero then the flux through the surface is zero which depends upon the magnitude of field and the angle that it makes with the area vector at each point and so it is not necessary that the field will be zero at all points of the surface.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

Electric filed between two points inside the hollow sphere is zero means that the two points are at the same potential. In other words the potential difference between the two points is zero. It is not necessary that the potentials are zero.

There fore The electric field inside a hollow uniformly charged sphere is zero implies the potentials at any two points inside the sphere are the same.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: The electric field inside a hollow uniformly charged sphere is zero Does this imply that the potential is zero inside the sphere Explain?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

The potential electric energy of a charged object?

Static electricity


What has potential energy?

Potential energy is a energy stored within a system as a result of the position or configuration of the different parts of that system.The types of potential energy are gravitational potential energy, which is energy due to height, and elastic potential energy, which is energy involved with a stretched or compressed spring.


What is electric potential in between twooppositely charged plates?

The electric potential difference is measured in volts. The amount of volts will depend on what kind of plates and the solution which the plates have been put in to.


When the negatively charged object moves in the opposite direction of an electric field the potential energy of the object?

decreases


Is an electric field a potential field?

no electric field is not a potential field .ELECTRIC FIELD IS A SCALAR QUANTITY WHERE AS POTENTIAL IS THE VECTOR QUANTITY. NO SCALAR QUANTITY HAS A FIELD SO THERE IS NO RELATION BETWEEN ELECTRIC FIELD AND POTENTIAL OR IN OTHER WORD POTENTIAL HAS NO FIELD <<>> An electric field is a vector field, because it has magnitude and direction. A pair of charged parallel plates has an electric field between them directed from the negative to the positive plate. The electric field is the gradient of the potential, which is another field but a scalar one. A field is just a quantity with a value that depends on positon. The potential is measured in volts and if one plate is grounded and the other at positive potential V, the potential rises from zero to V as the position changes from the lower plate to the top one.

Related questions

The potential electric energy of a charged object?

Static electricity


What does electrical potential mean?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field. If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel. However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle. U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away) V = kq1/r (electric potential requiring only 1 charge) V = U/q2 (electric potential is potential energy without the second charge) U = Vq2 (electric potential energy is electric potential multiplied by second charge) There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass. It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive: U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes) So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way. However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location. V = k(-q1)/r = -kq1/r U = k(-q1)(q2)/r = -kq1q2/r Potential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units. Volts = Number of Joules / Number of Coulombs. Electric Potential = Electric Potential Energy / Charge of Test Particle


What Electrical potential energy?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field. If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel. However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle. U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away) V = kq1/r (electric potential requiring only 1 charge) V = U/q2 (electric potential is potential energy without the second charge) U = Vq2 (electric potential energy is electric potential multiplied by second charge) There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass. It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive: U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes) So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way. However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location. V = k(-q1)/r = -kq1/r U = k(-q1)(q2)/r = -kq1q2/r Potential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units. Volts = Number of Joules / Number of Coulombs. Electric Potential = Electric Potential Energy / Charge of Test Particle


How electrical potential produce?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field.If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel.However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle.U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away)V = kq1/r (electric potential requiring only 1 charge)V = U/q2 (electric potential is potential energy without the second charge)U = Vq2 (electric potential energy is electric potential multiplied by second charge)There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass.It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive:U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes)So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way.However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location.V = k(-q1)/r = -kq1/rU = k(-q1)(q2)/r = -kq1q2/rPotential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units.Volts = Number of Joules / Number of Coulombs.Electric Potential = Electric Potential Energy / Charge of Test Particle


What has potential energy?

Potential energy is a energy stored within a system as a result of the position or configuration of the different parts of that system.The types of potential energy are gravitational potential energy, which is energy due to height, and elastic potential energy, which is energy involved with a stretched or compressed spring.


The energy a particle possesses due to its position relative to other charged particles?

electric potential energy


What is electric potential in between twooppositely charged plates?

The electric potential difference is measured in volts. The amount of volts will depend on what kind of plates and the solution which the plates have been put in to.


When the negatively charged object moves in the opposite direction of an electric field the potential energy of the object?

decreases


How do you know if an object has potential energy?

Usually it means the object has gained height. It could also happen if the object is moved to a planet with higher gravity. Potential NRG also occurs when a positively charged object moves into an area of higher potential in a electric or magnetic field, or when a negatively charged object moves into an area of lower potential in an electric or magnetic field.


A proton is in an electric field and has an electric potential energy of 0.5 J What is the electric potential voltage that it experiences?

First off you know that when it says "Proton" you should know that its a Positive (+) Charged subatomic particle! Now You use the equation that says --> Volt = Electric Potential Energy / Q Volt = 0.5 / +1 (proton) Volt = 0.5


Why do the particle of objects have both kinetic and potential energy?

The particles that make up an object with have both types of energy because they are at some height (gravitational potential), vibrating back and forth (kinetic energy, and made of charged particles electric potential because of electric fields).


Is an electric field a potential field?

no electric field is not a potential field .ELECTRIC FIELD IS A SCALAR QUANTITY WHERE AS POTENTIAL IS THE VECTOR QUANTITY. NO SCALAR QUANTITY HAS A FIELD SO THERE IS NO RELATION BETWEEN ELECTRIC FIELD AND POTENTIAL OR IN OTHER WORD POTENTIAL HAS NO FIELD <<>> An electric field is a vector field, because it has magnitude and direction. A pair of charged parallel plates has an electric field between them directed from the negative to the positive plate. The electric field is the gradient of the potential, which is another field but a scalar one. A field is just a quantity with a value that depends on positon. The potential is measured in volts and if one plate is grounded and the other at positive potential V, the potential rises from zero to V as the position changes from the lower plate to the top one.