move or accelerate.
Net force determines the motion of the object. If the net force acting on an object is not zero, the object will accelerate in the direction of the net force.
The net force acting on the object determines its motion. The net force is the combination of all the individual forces acting on the object, and it determines how the object will accelerate or move. If the net force is zero, the object will remain in its current state of motion (either at rest or moving at a constant velocity).
The net force acting on an object determines the acceleration of the object in the direction of the force. If the net force is in the same direction as the object's motion, the object will accelerate in that direction. If the net force is in the opposite direction, the object will decelerate or change direction.
The result of the combined forces on an object is called the net force. This net force determines the object's acceleration according to Newton's second law of motion, F = ma, where F is the net force, m is the object's mass, and a is its acceleration.
The force that overcomes resistance is typically referred to as the "net force." Net force is the vector sum of all forces acting on an object and determines how the object accelerates. When the net force is greater than the resistance force, the object will overcome the resistance and accelerate in the direction of the net force.
Net force determines the motion of the object. If the net force acting on an object is not zero, the object will accelerate in the direction of the net force.
The net force acting on the object determines its motion. The net force is the combination of all the individual forces acting on the object, and it determines how the object will accelerate or move. If the net force is zero, the object will remain in its current state of motion (either at rest or moving at a constant velocity).
The net force acting on an object determines the acceleration of the object in the direction of the force. If the net force is in the same direction as the object's motion, the object will accelerate in that direction. If the net force is in the opposite direction, the object will decelerate or change direction.
The sum of all forces acting on an object is known as the net force. This net force determines the object's acceleration according to Newton's second law of motion, F = ma, where F is the net force, m is the object's mass, and a is its acceleration.
The result of the combined forces on an object is called the net force. This net force determines the object's acceleration according to Newton's second law of motion, F = ma, where F is the net force, m is the object's mass, and a is its acceleration.
The force that overcomes resistance is typically referred to as the "net force." Net force is the vector sum of all forces acting on an object and determines how the object accelerates. When the net force is greater than the resistance force, the object will overcome the resistance and accelerate in the direction of the net force.
The symbol for net force is usually represented by Fnet. It takes into account all the forces acting on an object and determines the overall force acting on the object.
The net force acting on the object determines its motion. The net force is the combination of all the individual forces acting upon the object, taking into account both their magnitudes and directions. The object will accelerate in the direction of the net force according to Newton's second law of motion.
The net force acting on an object is the combination of all individual forces acting on it. It is the vector sum of all forces, taking into account their magnitudes and directions. The net force determines the acceleration of the object according to Newton's second law of motion.
Force is a push or pull acting on an object, while net force is the overall force acting on an object when all the individual forces are combined. Net force takes into account the direction and magnitude of all forces acting on an object and determines the resulting motion.
When more than one force acts on an object, it is called a net force. The net force is the combination of all the individual forces acting on an object. It determines the object's resulting motion and acceleration.
The sum of forces acting on an object is known as the net force. It is calculated by adding up all the individual forces acting on the object, taking into account their directions and magnitudes. This net force determines the object's acceleration according to Newton's second law of motion.