velocity
cause Velocity= wavelength X frequency
Frequency and wavelength of a wave are inversely related: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the wave equation: speed = frequency x wavelength. In other words, for a given wave speed, if frequency increases, wavelength must decrease to maintain the same speed.
Frequency is inversely proportional to the wave length, thus saying the shorter the wave length the higher the frequency and vice versa.The frequency is the number of waves within a time period. As the frequency within that time period increases, the number of waves increases, therefore the width of each wave (wavelength) within that time period has to decrease. Therefore:As the wave length increases, the frequency decreasesAs the wave length decreases, the frequency increases
The product of wavelength and frequency is the speed of the wave, which is a constant value for a specific medium, such as the speed of light in a vacuum. The equation that relates wavelength, frequency, and speed is: speed = wavelength * frequency.
The frequency of a wave is not directly related to the wave length. A low frequency wave or a high frequency wave may be either long-wave or short-wave.
If you increase the frequency of a periodic wave, the wavelength would decrease. This is because wavelength and frequency are inversely proportional in a wave: as frequency goes up, wavelength goes down.
wave length and frequency are the product of the wave speed, so the wave speed is a constant variable and the other two are inversely proportional the wave length increases, as the frequency decreases
Frequency (1/seconds) x Wave Length (meters) = Speed (meters/sec. or m/s)
Wavelength and frequency must be inversely proportional, because their product is always the same number . . . the wave speed.
Frequency and wavelength of a wave are inversely related: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the wave equation: speed = frequency x wavelength. In other words, for a given wave speed, if frequency increases, wavelength must decrease to maintain the same speed.
It is a constant which is equal to the speed.
velocity of a wave equals wave frequency times wave length.
Frequency is inversely proportional to the wave length, thus saying the shorter the wave length the higher the frequency and vice versa.The frequency is the number of waves within a time period. As the frequency within that time period increases, the number of waves increases, therefore the width of each wave (wavelength) within that time period has to decrease. Therefore:As the wave length increases, the frequency decreasesAs the wave length decreases, the frequency increases
The product of wavelength and frequency is the speed of the wave, which is a constant value for a specific medium, such as the speed of light in a vacuum. The equation that relates wavelength, frequency, and speed is: speed = wavelength * frequency.
The frequency of a wave is not directly related to the wave length. A low frequency wave or a high frequency wave may be either long-wave or short-wave.
velocity = frequency x wavelength
Frequency of the a wave equals its velocity divided by its wavelength.
I don't know what's "water length" but I do know that the deeper the water are, the faster the wave goes. If you meant wave length and not water length, then the longer the wavelength, the smaller the frequency of the wave.