The smaller the mass of an object, the lower its inertia. Inertia is the resistance of an object to changes in its state of motion, so objects with less mass require less force to accelerate or decelerate compared to objects with more mass.
Inertia decreases as mass gets smaller. Inertia is a measure of an object's resistance to changes in its state of motion, and is directly proportional to mass. As mass decreases, so does the inertia of the object.
The mass of the object and the velocity of the object.
the mass of an object. The greater the mass of an object, the greater its inertia. Additionally, inertia also depends on the velocity of the object - the faster an object is moving, the greater its inertia.
It is easier to change the motion of an object with a smaller mass because it has less inertia, which is the tendency of an object to resist changes in its motion. Objects with larger mass have more inertia and resist changes in motion more strongly. This means it takes more force to change the motion of an object with a larger mass compared to one with a smaller mass.
Inertia is affected by an object's mass. The greater the mass of an object, the greater its inertia. Additionally, inertia is also influenced by an object's velocity - the higher the velocity, the greater the inertia.
Inertia decreases as mass gets smaller. Inertia is a measure of an object's resistance to changes in its state of motion, and is directly proportional to mass. As mass decreases, so does the inertia of the object.
It depends on the object's mass.
By Newton's first law of motion, it can be concluded that inertia of an object is inversely proportional to the mass of the object. In other words, larger the mass smaller the inertia and vice-versa.
The mass of the object and the velocity of the object.
If the mass is larger, the inertia is larger as well. Inertia is the property of an object that resists changes in its state of motion, and it is directly proportional to mass. Therefore, an increase in mass results in an increase in inertia, making it more difficult to change the object's motion.
the mass of the object determines the amount of inertia in an object
the mass of an object. The greater the mass of an object, the greater its inertia. Additionally, inertia also depends on the velocity of the object - the faster an object is moving, the greater its inertia.
It is easier to change the motion of an object with a smaller mass because it has less inertia, which is the tendency of an object to resist changes in its motion. Objects with larger mass have more inertia and resist changes in motion more strongly. This means it takes more force to change the motion of an object with a larger mass compared to one with a smaller mass.
Inertia is affected by an object's mass. The greater the mass of an object, the greater its inertia. Additionally, inertia is also influenced by an object's velocity - the higher the velocity, the greater the inertia.
The mass of an object determines its inertia. Inertia is the resistance of an object to changes in its state of motion, and the greater the mass of an object, the greater its inertia.
Yes, the mass of an object determines the amount of inertia it has. Inertia is the resistance of an object to changes in its state of motion, and this resistance is directly proportional to the object's mass. The greater the mass, the greater the inertia.
inertia is the laziness of an object, or an objects resistance to change its state of motion, or how easy it is to start or stop an object. Mass is the measure of an object's inertia. Therefore with more mass, an object has more inertia.