In circular motion an object accelerates towards the radius of the circle but its velocity is unchanged
When an object is moving upwards, its velocity is directed upwards. If the object is near the Earth or any other planet, then its acceleration is directed downwards, which also means that its upward velocity is decreasing.
The velocity of an object moving in a circular path is always tangent to the circle at that point. Meanwhile, the acceleration of the object is directed towards the center of the circle, called centripetal acceleration. Since the velocity is tangent to the circle and the acceleration is pointing towards the center, they will be mutually perpendicular.
True. In uniform circular motion, the particle's velocity is tangential to the circular path, and the acceleration is directed radially inward, towards the center of the circular path. This centripetal acceleration causes the change in direction of the particle's velocity, but the magnitude of the velocity remains constant.
In rotational motion, angular acceleration and centripetal acceleration are related. Angular acceleration is the rate at which an object's angular velocity changes, while centripetal acceleration is the acceleration directed towards the center of rotation. In rotational motion, centripetal acceleration is caused by angular acceleration, as the change in angular velocity results in a change in direction, causing the object to accelerate towards the center of rotation.
In uniform circular motion, the force is directed towards the center of the circle, while the acceleration is directed towards the center as well.
When an object is moving upwards, its velocity is directed upwards. If the object is near the Earth or any other planet, then its acceleration is directed downwards, which also means that its upward velocity is decreasing.
The velocity of an object moving in a circular path is always tangent to the circle at that point. Meanwhile, the acceleration of the object is directed towards the center of the circle, called centripetal acceleration. Since the velocity is tangent to the circle and the acceleration is pointing towards the center, they will be mutually perpendicular.
The acceleration of a satellite is directed inward, towards the center of the orbit.
True. In uniform circular motion, the particle's velocity is tangential to the circular path, and the acceleration is directed radially inward, towards the center of the circular path. This centripetal acceleration causes the change in direction of the particle's velocity, but the magnitude of the velocity remains constant.
In rotational motion, angular acceleration and centripetal acceleration are related. Angular acceleration is the rate at which an object's angular velocity changes, while centripetal acceleration is the acceleration directed towards the center of rotation. In rotational motion, centripetal acceleration is caused by angular acceleration, as the change in angular velocity results in a change in direction, causing the object to accelerate towards the center of rotation.
In uniform circular motion, the force is directed towards the center of the circle, while the acceleration is directed towards the center as well.
The acceleration of a body moving uniformly in a circle is directed towards the center because the velocity of the body is constantly changing direction, even though its speed remains constant. This change in direction of the velocity results in a centripetal acceleration that is required to keep the body moving in a circular path.
In circular motion, centripetal acceleration occurs, which is the acceleration directed towards the center of the circular path. This acceleration is necessary to keep an object moving in a circle, as it continually changes the direction of the object's velocity.
The acceleration of a body moving uniformly in a circle is directed towards the center of the circle because it is constantly changing direction due to the change in velocity (even though the speed is constant). This change in direction results in a centripetal acceleration that keeps the body moving in a circular path.
In free fall, the acceleration of the object remains constant at 9.8 m/s^2 directed downward towards the center of the Earth. The object's velocity will increase as it falls due to the constant acceleration, until it reaches terminal velocity if air resistance is present.
The acceleration of an object turning a corner is directed towards the center of the circle that the object is moving along. This acceleration is called centripetal acceleration and is responsible for changing the direction of the object's velocity, keeping it moving in a curved path.
North-west. More specifically, as the object's velocity direction changes uniformly from east to north, the acceleration and force producing this acceleration are both constant and changing direction uniformly from north to west.