It's a strange and fascinating fact that in asking your question, you've used EXACTLY the same
wording as another person, who posted EXACTLY the same question here on WikiAnswers, did ...
and both of your questions apparently refer to the same drawing or picture or previous description
that neither of you has included with your question. It's almost as if the two of you are either
identical twins separated at birth, or else a couple of psychically linked but otherwise normal
people, or else two completely ordinary people who are both trying to get WikiAnswers
volunteers to do your homework or take your test for you. Fascinating, Captain!
IN FACT ... I can see the same question repeatedly posted previously at regular 1-year
intervals. Shades of Edmund Halley !
Anyhow, since you mention "the falling body", I think you're actually asking whether heavier
objects fall with the same or different accelerations compared to lighter ones.
The answer is that as long as you test all of them on the same planet, and they don't run into
too much air, the lightest feather and the heaviest battleship, and everything in between, all
fall with the same exact acceleration.
Your question describes it as a "falling body", so I'm assuming that you're asking about a body with no force on it except for the gravitational force. This is an important assumption. If it's true, then the mass (weight) of the falling body has no effect at all on its acceleration. Except for the effect of air resistance, all bodies fall with the same acceleration.
No, changing the mass of a free-falling body does not affect the value of the acceleration due to gravity. The acceleration due to gravity is a constant value that is independent of the mass of the object. All objects fall at the same rate in a vacuum due to gravity.
The acceleration of a falling body due to gravity is approximately 9.81 m/s^2, often rounded to 10 m/s^2 for simplicity. This means that the speed of a falling body increases by 9.81 meters per second every second.
To study the acceleration of a free-falling body, you could modify the experiment by using a motion sensor to measure the position of the falling object at different time intervals. By collecting data on the position of the object over time, you can calculate the acceleration using the formula a = 2*(d/t^2), where a is acceleration, d is distance fallen, and t is time elapsed. This data can help you analyze the acceleration of the free-falling body accurately.
Near Earth, the acceleration (due to Earth's gravity) is approximately 9.8 meters/second2. In other places, for example at a greater distance from Earth, or on the Moon or on other planets, the acceleration due to gravity takes on other values.
Your question describes it as a "falling body", so I'm assuming that you're asking about a body with no force on it except for the gravitational force. This is an important assumption. If it's true, then the mass (weight) of the falling body has no effect at all on its acceleration. Except for the effect of air resistance, all bodies fall with the same acceleration.
No, changing the mass of a free-falling body does not affect the value of the acceleration due to gravity. The acceleration due to gravity is a constant value that is independent of the mass of the object. All objects fall at the same rate in a vacuum due to gravity.
acceleration of a falling body is 9.8m/s*s and its direction is vertically downward.
The value of acceleration in a free-falling body is constant (g). The mass of the body will have no effect on the acceleration. On earth, if you drop a heavy weight and a feather together, the weight will hit the ground first because the feather is held back by air resistance. If you do the same thing in a vacuum (as was demonstrated by an astronaut on the moon) both will hit the ground at the same time.
YES
The acceleration of a falling body due to gravity is approximately 9.81 m/s^2, often rounded to 10 m/s^2 for simplicity. This means that the speed of a falling body increases by 9.81 meters per second every second.
A - 9.8m/s2
9.8 m/s2
To study the acceleration of a free-falling body, you could modify the experiment by using a motion sensor to measure the position of the falling object at different time intervals. By collecting data on the position of the object over time, you can calculate the acceleration using the formula a = 2*(d/t^2), where a is acceleration, d is distance fallen, and t is time elapsed. This data can help you analyze the acceleration of the free-falling body accurately.
Near Earth, the acceleration (due to Earth's gravity) is approximately 9.8 meters/second2. In other places, for example at a greater distance from Earth, or on the Moon or on other planets, the acceleration due to gravity takes on other values.
Zero
Zero