When the cardboard is at rest, the magnitudes of the pair of forces acting on it are equal. These forces form an action-reaction pair, with one force pushing or pulling in one direction, and the other force of equal magnitude pushing or pulling in the opposite direction.
answer
When the cardboard is at rest, the magnitudes of the two forces acting on it (gravity pulling down and normal force pushing up) are equal in magnitude and opposite in direction to maintain equilibrium. This means the net force acting on the cardboard is zero.
When the cardboard is at rest, the magnitudes of the pair of forces acting on it are equal, but they act in opposite directions. This is known as Newton's third law of motion, stating that every action has an equal and opposite reaction. The forces cancel each other out, resulting in a state of equilibrium.
Since the cardboard is at rest we know that it is not experiencing any acceleration, hence, the net forces acting on it add up to zero (in magnitude and direction). Force equals mass times acceleration.
When the cardboard is at rest, the magnitudes of the pair of forces acting on it are equal but in opposite directions. This is known as Newton's third law of motion, which states that for every action force there is an equal and opposite reaction force.
answer
answer
answer
When the cardboard is at rest, the magnitudes of the two forces acting on it (gravity pulling down and normal force pushing up) are equal in magnitude and opposite in direction to maintain equilibrium. This means the net force acting on the cardboard is zero.
When the cardboard is at rest, the magnitudes of the pair of forces acting on it are equal, but they act in opposite directions. This is known as Newton's third law of motion, stating that every action has an equal and opposite reaction. The forces cancel each other out, resulting in a state of equilibrium.
Since the cardboard is at rest we know that it is not experiencing any acceleration, hence, the net forces acting on it add up to zero (in magnitude and direction). Force equals mass times acceleration.
When the cardboard is at rest, the magnitudes of the pair of forces acting on it are equal but in opposite directions. This is known as Newton's third law of motion, which states that for every action force there is an equal and opposite reaction force.
Artificial Intelligence (AI) is rapidly evolving, revolutionizing various industries and aspects of our daily lives. This technological progress has led to significant breakthroughs, making AI the cornerstone of modern innovation.
You compare their magnitudes.
To determine if two objects have equal displacements, compare the magnitudes and directions of their displacements. If the magnitudes (distances) and directions traveled by each object are the same, then their displacements are equal. Displacement is a vector quantity that takes into account both distance and direction.
To compare the direction of your partner's force with your own, you can use vector addition. If the forces are in the same direction, you add their magnitudes to get the combined force. If they are in opposite directions, you subtract the magnitudes. If the forces are at an angle to each other, you can use trigonometry to determine the resultant force direction.
When the cardboard is at rest, the magnitudes of the pair of forces acting on it are equal in order to maintain equilibrium. The direction of the forces is opposite, with one force pushing in one direction and the other force pushing in the opposite direction, creating a balanced system.