The formula for calculating the electric field of a sphere is E k Q / r2, where E is the electric field, k is the Coulomb's constant (8.99 x 109 N m2/C2), Q is the charge of the sphere, and r is the distance from the center of the sphere.
The formula for calculating the electric field of a charged sphere is E k Q / r2, where E is the electric field, k is the Coulomb's constant (8.99 x 109 N m2/C2), Q is the charge of the sphere, and r is the distance from the center of the sphere.
The formula for calculating the amplitude of an electric field is given by E cB, where E represents the electric field amplitude, c is the speed of light in a vacuum, and B is the magnetic field amplitude.
The formula for calculating the electric field of a cylinder is E / (2r), where E is the electric field, is the charge density of the cylinder, is the permittivity of free space, and r is the distance from the axis of the cylinder.
The formula for calculating the electric flux () through a closed surface is EdA, where E is the electric field and dA is a differential area element on the surface.
The formula for calculating the electric field between two parallel plates is E V/d, where E is the electric field strength, V is the potential difference between the plates, and d is the distance between the plates.
The formula for calculating the electric field of a charged sphere is E k Q / r2, where E is the electric field, k is the Coulomb's constant (8.99 x 109 N m2/C2), Q is the charge of the sphere, and r is the distance from the center of the sphere.
The formula for calculating the amplitude of an electric field is given by E cB, where E represents the electric field amplitude, c is the speed of light in a vacuum, and B is the magnetic field amplitude.
The formula for calculating the electric field of a cylinder is E / (2r), where E is the electric field, is the charge density of the cylinder, is the permittivity of free space, and r is the distance from the axis of the cylinder.
The formula for calculating the electric flux () through a closed surface is EdA, where E is the electric field and dA is a differential area element on the surface.
The formula for calculating the electric field between two parallel plates is E V/d, where E is the electric field strength, V is the potential difference between the plates, and d is the distance between the plates.
The formula for calculating the electric field strength between two plates is E V/d, where E is the electric field strength, V is the potential difference between the plates, and d is the distance between the plates.
To calculate the strength of the electric field just outside a sphere, you can use the formula E k Q / r2, where E is the electric field strength, k is the electrostatic constant, Q is the charge of the sphere, and r is the distance from the center of the sphere to the point outside.
To calculate the electric field just outside the surface of the inner sphere, you can use the formula for electric field strength, which is E k Q / r2, where E is the electric field strength, k is the Coulomb's constant, Q is the charge on the inner sphere, and r is the distance from the center of the inner sphere to the point just outside its surface.
The electric flux through a sphere is the total electric field passing through the surface of the sphere. It is calculated by multiplying the electric field strength by the surface area of the sphere.
The behavior of the electric field outside a sphere is that it behaves as if all the charge of the sphere is concentrated at its center. This means that the electric field outside the sphere follows the same pattern as if the entire charge of the sphere was located at its center.
The electric field inside a charged sphere is uniform and directed radially towards the center of the sphere.
The distribution of the electric field inside a sphere is uniform, meaning it is the same at all points inside the sphere.