The formula to calculate the total work done in a system is W Fd, where W represents work, F is the force applied, and d is the distance over which the force is applied.
The formula to calculate work done per person is: Work done = Total work / Number of people. This formula divides the total work required to be done by the number of people doing the work to determine the work done per person.
The adiabatic work formula in thermodynamics is used to calculate the work done on or by a system when there is no heat exchange with the surroundings. It is given by the equation: W -PV, where W is the work done, P is the pressure, and V is the change in volume.
To calculate the work done by friction in a system, you can use the formula: Work Force of friction x Distance. First, determine the force of friction acting on the object. Then, multiply this force by the distance the object moves against the frictional force. This will give you the work done by friction in the system.
The adiabatic work equation in thermodynamics is used to calculate the work done on or by a system when there is no heat exchange with the surroundings. It is represented by the formula W -U, where W is the work done, and U is the change in internal energy of the system.
The formula to calculate the work done by a gas in a thermodynamic process is: Work Pressure x Change in Volume
The formula to calculate work done per person is: Work done = Total work / Number of people. This formula divides the total work required to be done by the number of people doing the work to determine the work done per person.
The adiabatic work formula in thermodynamics is used to calculate the work done on or by a system when there is no heat exchange with the surroundings. It is given by the equation: W -PV, where W is the work done, P is the pressure, and V is the change in volume.
To calculate the work done by friction in a system, you can use the formula: Work Force of friction x Distance. First, determine the force of friction acting on the object. Then, multiply this force by the distance the object moves against the frictional force. This will give you the work done by friction in the system.
The adiabatic work equation in thermodynamics is used to calculate the work done on or by a system when there is no heat exchange with the surroundings. It is represented by the formula W -U, where W is the work done, and U is the change in internal energy of the system.
The formula to calculate the work done by a gas in a thermodynamic process is: Work Pressure x Change in Volume
The internal energy of a system can be calculated by adding the system's kinetic energy and potential energy together. This can be done using the formula: Internal Energy Kinetic Energy Potential Energy.
The shaft work formula used to calculate the work done by a rotating shaft is: Work Torque x Angular Displacement.
The work of friction formula is W Fd, where W is the work done by friction, F is the force of friction, and d is the distance over which the force is applied. This formula is used to calculate the energy dissipated due to friction in a mechanical system by multiplying the force of friction by the distance over which it acts.
total liters /total km done
The rotational work formula is W , where W represents the work done in rotational motion, is the torque applied, and is the angle through which the object rotates. This formula is used to calculate the work done in rotational motion by multiplying the torque applied to an object by the angle through which it rotates.
To calculate the work done in a thermodynamic process using the formula work pdV, you need to multiply the pressure (p) by the change in volume (dV). This formula helps you determine the amount of energy transferred as work during the process.
work done on the system: when a surrounding does work on the system the total energy increases so work done is positive..........