The potential inside a conductor is zero.
The electric potential inside a conductor is constant and does not depend on the properties of the conductor. This is known as the electrostatic equilibrium condition. The properties of the conductor, such as its shape and material, only affect the distribution of charges on its surface, not the electric potential inside.
The electric potential inside a conductor is constant and equal to the potential at its surface. This is because the electric field inside a conductor is zero, and any excess charge on the conductor redistributes itself to maintain equilibrium with the surrounding environment.
The electric potential inside a ring conductor on a conducting paper is zero because the electric field inside a conductor in electrostatic equilibrium is zero. This is due to the charges redistributing themselves in such a way that the electric field cancels out inside the conductor. Since the electric potential is directly related to the electric field, the potential inside the conductor is also zero.
In electrostatic equilibrium, the inside of a conductor is equipotential. This means that the electric potential is constant at all points within the material of the conductor. Any excess charge on the surface of the conductor would redistribute itself to ensure that the entire interior remains at the same potential.
The presence of a charge inside a conductor affects the distribution of electric potential by causing the charges to redistribute themselves in such a way that the electric potential is the same throughout the material. This is known as electrostatic equilibrium.
The electric potential inside a conductor is constant and does not depend on the properties of the conductor. This is known as the electrostatic equilibrium condition. The properties of the conductor, such as its shape and material, only affect the distribution of charges on its surface, not the electric potential inside.
The electric potential inside a conductor is constant and equal to the potential at its surface. This is because the electric field inside a conductor is zero, and any excess charge on the conductor redistributes itself to maintain equilibrium with the surrounding environment.
The electric potential inside a ring conductor on a conducting paper is zero because the electric field inside a conductor in electrostatic equilibrium is zero. This is due to the charges redistributing themselves in such a way that the electric field cancels out inside the conductor. Since the electric potential is directly related to the electric field, the potential inside the conductor is also zero.
In electrostatic equilibrium, the inside of a conductor is equipotential. This means that the electric potential is constant at all points within the material of the conductor. Any excess charge on the surface of the conductor would redistribute itself to ensure that the entire interior remains at the same potential.
The presence of a charge inside a conductor affects the distribution of electric potential by causing the charges to redistribute themselves in such a way that the electric potential is the same throughout the material. This is known as electrostatic equilibrium.
Yes. The static electric field inside a charged conductor is zero, no matter what the voltage is between the conductor and the rest of the world.
A conductor is an equipotential surface because the electric field inside a conductor is zero in electrostatic equilibrium. This means that all points on the conductor have the same electric potential, making it an equipotential surface. Any excess charge on the conductor redistributes itself to ensure this equal potential.
In a conductor, the distribution of charges affects the electric potential. Charges tend to distribute themselves evenly on the surface of a conductor, creating a uniform electric potential throughout. This means that the electric potential is the same at all points on the surface of the conductor.
The electric field inside a hollow conductor is zero.
Potential difference between the ends of a conductor refers to the electrical energy difference per unit charge between two points in the conductor. It is commonly known as voltage and is measured in volts. A potential difference is necessary for the flow of electric current in a conductor.
Inside a conductor, the electric charges are free to move and redistribute themselves to cancel out any external electric field. This results in no net electric field inside the conductor.
The correct term for the 'live' conductor is the 'line' conductor. The line conductor has a potential of 230 V (in UK) with respect to the neutral conductor which is at approximately the same potential as earth. This potential difference provides the 'driving force' for the current drawn by the load.