answersLogoWhite

0

Reversible adiabatic expansion is a process in thermodynamics where a system expands without heat exchange with its surroundings. This expansion leads to a decrease in temperature and pressure within the system, while the volume increases. The process is reversible, meaning it can be reversed without any energy loss. This type of expansion affects the thermodynamic properties of a system by changing its internal energy, temperature, pressure, and volume in a predictable manner according to the laws of thermodynamics.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between reversible adiabatic expansion work and the change in internal energy of a system?

During reversible adiabatic expansion, the work done by the system is equal to the change in internal energy.


What is the relationship between adiabatic expansion and enthalpy change in a thermodynamic system?

During adiabatic expansion in a thermodynamic system, there is no heat exchange with the surroundings. This leads to a change in enthalpy, which is the total heat content of the system. The enthalpy change during adiabatic expansion is related to the work done by the system and can be calculated using the first law of thermodynamics.


Which thermodynamic process gives maximum work?

Reversible adiabatic expansion/compression


What is steam temperature after adiabatic expansion?

The steam temperature after adiabatic expansion depends on the specific conditions of the expansion process, such as initial temperature, pressure, and volume. During adiabatic expansion, the internal energy of the steam decreases, causing its temperature to drop. The final temperature can be determined using the appropriate thermodynamic equations.


What are the key principles and processes involved in the Carnot power cycle?

The Carnot power cycle is based on four key principles: reversible isothermal expansion, reversible adiabatic expansion, reversible isothermal compression, and reversible adiabatic compression. The cycle involves transferring heat energy from a high-temperature reservoir to a working fluid, which then performs work by expanding and contracting. The efficiency of the Carnot cycle is determined by the ratio of the temperatures of the hot and cold reservoirs.

Related Questions

Why does gas inside a cylinder cool when subjected to adiabatic expansion?

because while cooling of gas in adiabatic expansion process , as it is a reversible procces the heat is lost while reversible work


What is the relationship between reversible adiabatic expansion work and the change in internal energy of a system?

During reversible adiabatic expansion, the work done by the system is equal to the change in internal energy.


What is the relationship between adiabatic expansion and enthalpy change in a thermodynamic system?

During adiabatic expansion in a thermodynamic system, there is no heat exchange with the surroundings. This leads to a change in enthalpy, which is the total heat content of the system. The enthalpy change during adiabatic expansion is related to the work done by the system and can be calculated using the first law of thermodynamics.


Which thermodynamic process gives maximum work?

Reversible adiabatic expansion/compression


What is a super adiabatic?

A super adiabatic process is a thermodynamic process in which a gas expands or compresses without heat exchange with its surroundings, but with a temperature drop that is greater than what is predicted by the standard adiabatic process. This phenomenon can occur in certain conditions, such as rapid expansion or in specific materials and systems where additional cooling mechanisms are at play. Super adiabatic behavior can lead to unique thermodynamic properties and is often studied in fields like astrophysics and materials science.


What is steam temperature after adiabatic expansion?

The steam temperature after adiabatic expansion depends on the specific conditions of the expansion process, such as initial temperature, pressure, and volume. During adiabatic expansion, the internal energy of the steam decreases, causing its temperature to drop. The final temperature can be determined using the appropriate thermodynamic equations.


What are the key principles and processes involved in the Carnot power cycle?

The Carnot power cycle is based on four key principles: reversible isothermal expansion, reversible adiabatic expansion, reversible isothermal compression, and reversible adiabatic compression. The cycle involves transferring heat energy from a high-temperature reservoir to a working fluid, which then performs work by expanding and contracting. The efficiency of the Carnot cycle is determined by the ratio of the temperatures of the hot and cold reservoirs.


How can one calculate the work done during an adiabatic reversible expansion process?

To calculate the work done during an adiabatic reversible expansion process, you can use the formula: work -nRT ln(V2/V1), where n is the number of moles of gas, R is the gas constant, T is the temperature, and V1 and V2 are the initial and final volumes of the gas.


Is isothermal expansion reversible under ideal conditions?

No. All processes involving heat transfer are not reversible, since they result in an increase in entropy. Isothermal expansion implies heat transfer to maintain the system at a constant temperature. Normally an expanding gas would cool if there were no heat entering the system. Adiabatic processes involve no heat transfer and are reversible. The temperature can (and usually does) change during an adiabatic process.


How does enthalpy change during adiabatic expansion?

During adiabatic expansion, enthalpy remains constant.


What is the main isentropic thermodynamic process?

Practically there is no reversible isentropic process but to make the concept easier to be understood, you have to assume the following: * Ideal gas. * no friction losses. * Adiabatic preocess (no heat gain, no heat loss). API 520 part 1 Appendix B assumes that the vapor expansion through a nozzle or a pressure relief valve follows an isentropic path.


What is a adiabatic expansion?

Adiabatic expansion is a process in thermodynamics where a gas expands without exchanging heat with its surroundings. This results in a decrease in the gas's temperature and pressure while its volume increases. Adiabatic expansion is commonly seen in natural phenomena like atmospheric air rising and expanding as it cools.